Description: Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subrecd.1 | |- ( ph -> A e. CC ) |
|
subrecd.2 | |- ( ph -> B e. CC ) |
||
subrecd.3 | |- ( ph -> A =/= 0 ) |
||
subrecd.4 | |- ( ph -> B =/= 0 ) |
||
Assertion | subrecd | |- ( ph -> ( ( 1 / A ) - ( 1 / B ) ) = ( ( B - A ) / ( A x. B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrecd.1 | |- ( ph -> A e. CC ) |
|
2 | subrecd.2 | |- ( ph -> B e. CC ) |
|
3 | subrecd.3 | |- ( ph -> A =/= 0 ) |
|
4 | subrecd.4 | |- ( ph -> B =/= 0 ) |
|
5 | subrec | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( 1 / A ) - ( 1 / B ) ) = ( ( B - A ) / ( A x. B ) ) ) |
|
6 | 1 3 2 4 5 | syl22anc | |- ( ph -> ( ( 1 / A ) - ( 1 / B ) ) = ( ( B - A ) / ( A x. B ) ) ) |