| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrecd.1 |
|- ( ph -> A e. CC ) |
| 2 |
|
subrecd.2 |
|- ( ph -> B e. CC ) |
| 3 |
|
subrecd.3 |
|- ( ph -> A =/= 0 ) |
| 4 |
|
subrecd.4 |
|- ( ph -> B =/= 0 ) |
| 5 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 6 |
5 1 5 2 3 4
|
divsubdivd |
|- ( ph -> ( ( 1 / A ) - ( 1 / B ) ) = ( ( ( 1 x. B ) - ( 1 x. A ) ) / ( A x. B ) ) ) |
| 7 |
2
|
mullidd |
|- ( ph -> ( 1 x. B ) = B ) |
| 8 |
1
|
mullidd |
|- ( ph -> ( 1 x. A ) = A ) |
| 9 |
7 8
|
oveq12d |
|- ( ph -> ( ( 1 x. B ) - ( 1 x. A ) ) = ( B - A ) ) |
| 10 |
9
|
oveq1d |
|- ( ph -> ( ( ( 1 x. B ) - ( 1 x. A ) ) / ( A x. B ) ) = ( ( B - A ) / ( A x. B ) ) ) |
| 11 |
6 10
|
eqtrd |
|- ( ph -> ( ( 1 / A ) - ( 1 / B ) ) = ( ( B - A ) / ( A x. B ) ) ) |