Metamath Proof Explorer


Theorem subrecd

Description: Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jan-2017)

Ref Expression
Hypotheses subrecd.1
|- ( ph -> A e. CC )
subrecd.2
|- ( ph -> B e. CC )
subrecd.3
|- ( ph -> A =/= 0 )
subrecd.4
|- ( ph -> B =/= 0 )
Assertion subrecd
|- ( ph -> ( ( 1 / A ) - ( 1 / B ) ) = ( ( B - A ) / ( A x. B ) ) )

Proof

Step Hyp Ref Expression
1 subrecd.1
 |-  ( ph -> A e. CC )
2 subrecd.2
 |-  ( ph -> B e. CC )
3 subrecd.3
 |-  ( ph -> A =/= 0 )
4 subrecd.4
 |-  ( ph -> B =/= 0 )
5 subrec
 |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( 1 / A ) - ( 1 / B ) ) = ( ( B - A ) / ( A x. B ) ) )
6 1 3 2 4 5 syl22anc
 |-  ( ph -> ( ( 1 / A ) - ( 1 / B ) ) = ( ( B - A ) / ( A x. B ) ) )