Description: A subring of a field is an integral domain. (Contributed by Thierry Arnoux, 18-May-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subrfld.1 | |- ( ph -> R e. Field ) |
|
subrfld.2 | |- ( ph -> S e. ( SubRing ` R ) ) |
||
Assertion | subrfld | |- ( ph -> ( R |`s S ) e. IDomn ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrfld.1 | |- ( ph -> R e. Field ) |
|
2 | subrfld.2 | |- ( ph -> S e. ( SubRing ` R ) ) |
|
3 | fldidom | |- ( R e. Field -> R e. IDomn ) |
|
4 | 1 3 | syl | |- ( ph -> R e. IDomn ) |
5 | 4 2 | subridom | |- ( ph -> ( R |`s S ) e. IDomn ) |