| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrg1.1 |
|- S = ( R |`s A ) |
| 2 |
|
subrg1.2 |
|- .1. = ( 1r ` R ) |
| 3 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 4 |
3
|
subrg1cl |
|- ( A e. ( SubRing ` R ) -> ( 1r ` R ) e. A ) |
| 5 |
1
|
subrgbas |
|- ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) |
| 6 |
4 5
|
eleqtrd |
|- ( A e. ( SubRing ` R ) -> ( 1r ` R ) e. ( Base ` S ) ) |
| 7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 8 |
7
|
subrgss |
|- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
| 9 |
5 8
|
eqsstrrd |
|- ( A e. ( SubRing ` R ) -> ( Base ` S ) C_ ( Base ` R ) ) |
| 10 |
9
|
sselda |
|- ( ( A e. ( SubRing ` R ) /\ x e. ( Base ` S ) ) -> x e. ( Base ` R ) ) |
| 11 |
|
subrgrcl |
|- ( A e. ( SubRing ` R ) -> R e. Ring ) |
| 12 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 13 |
7 12 3
|
ringidmlem |
|- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( ( ( 1r ` R ) ( .r ` R ) x ) = x /\ ( x ( .r ` R ) ( 1r ` R ) ) = x ) ) |
| 14 |
11 13
|
sylan |
|- ( ( A e. ( SubRing ` R ) /\ x e. ( Base ` R ) ) -> ( ( ( 1r ` R ) ( .r ` R ) x ) = x /\ ( x ( .r ` R ) ( 1r ` R ) ) = x ) ) |
| 15 |
1 12
|
ressmulr |
|- ( A e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) |
| 16 |
15
|
oveqd |
|- ( A e. ( SubRing ` R ) -> ( ( 1r ` R ) ( .r ` R ) x ) = ( ( 1r ` R ) ( .r ` S ) x ) ) |
| 17 |
16
|
eqeq1d |
|- ( A e. ( SubRing ` R ) -> ( ( ( 1r ` R ) ( .r ` R ) x ) = x <-> ( ( 1r ` R ) ( .r ` S ) x ) = x ) ) |
| 18 |
15
|
oveqd |
|- ( A e. ( SubRing ` R ) -> ( x ( .r ` R ) ( 1r ` R ) ) = ( x ( .r ` S ) ( 1r ` R ) ) ) |
| 19 |
18
|
eqeq1d |
|- ( A e. ( SubRing ` R ) -> ( ( x ( .r ` R ) ( 1r ` R ) ) = x <-> ( x ( .r ` S ) ( 1r ` R ) ) = x ) ) |
| 20 |
17 19
|
anbi12d |
|- ( A e. ( SubRing ` R ) -> ( ( ( ( 1r ` R ) ( .r ` R ) x ) = x /\ ( x ( .r ` R ) ( 1r ` R ) ) = x ) <-> ( ( ( 1r ` R ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( 1r ` R ) ) = x ) ) ) |
| 21 |
20
|
biimpa |
|- ( ( A e. ( SubRing ` R ) /\ ( ( ( 1r ` R ) ( .r ` R ) x ) = x /\ ( x ( .r ` R ) ( 1r ` R ) ) = x ) ) -> ( ( ( 1r ` R ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( 1r ` R ) ) = x ) ) |
| 22 |
14 21
|
syldan |
|- ( ( A e. ( SubRing ` R ) /\ x e. ( Base ` R ) ) -> ( ( ( 1r ` R ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( 1r ` R ) ) = x ) ) |
| 23 |
10 22
|
syldan |
|- ( ( A e. ( SubRing ` R ) /\ x e. ( Base ` S ) ) -> ( ( ( 1r ` R ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( 1r ` R ) ) = x ) ) |
| 24 |
23
|
ralrimiva |
|- ( A e. ( SubRing ` R ) -> A. x e. ( Base ` S ) ( ( ( 1r ` R ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( 1r ` R ) ) = x ) ) |
| 25 |
1
|
subrgring |
|- ( A e. ( SubRing ` R ) -> S e. Ring ) |
| 26 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 27 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 28 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
| 29 |
26 27 28
|
isringid |
|- ( S e. Ring -> ( ( ( 1r ` R ) e. ( Base ` S ) /\ A. x e. ( Base ` S ) ( ( ( 1r ` R ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( 1r ` R ) ) = x ) ) <-> ( 1r ` S ) = ( 1r ` R ) ) ) |
| 30 |
25 29
|
syl |
|- ( A e. ( SubRing ` R ) -> ( ( ( 1r ` R ) e. ( Base ` S ) /\ A. x e. ( Base ` S ) ( ( ( 1r ` R ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( 1r ` R ) ) = x ) ) <-> ( 1r ` S ) = ( 1r ` R ) ) ) |
| 31 |
6 24 30
|
mpbi2and |
|- ( A e. ( SubRing ` R ) -> ( 1r ` S ) = ( 1r ` R ) ) |
| 32 |
2 31
|
eqtr4id |
|- ( A e. ( SubRing ` R ) -> .1. = ( 1r ` S ) ) |