Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrg1ascl.p | |- P = ( Poly1 ` R ) | |
| subrg1ascl.a | |- A = ( algSc ` P ) | ||
| subrg1ascl.h | |- H = ( R |`s T ) | ||
| subrg1ascl.u | |- U = ( Poly1 ` H ) | ||
| subrg1ascl.r | |- ( ph -> T e. ( SubRing ` R ) ) | ||
| subrg1ascl.c | |- C = ( algSc ` U ) | ||
| Assertion | subrg1ascl | |- ( ph -> C = ( A |` T ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | subrg1ascl.p | |- P = ( Poly1 ` R ) | |
| 2 | subrg1ascl.a | |- A = ( algSc ` P ) | |
| 3 | subrg1ascl.h | |- H = ( R |`s T ) | |
| 4 | subrg1ascl.u | |- U = ( Poly1 ` H ) | |
| 5 | subrg1ascl.r | |- ( ph -> T e. ( SubRing ` R ) ) | |
| 6 | subrg1ascl.c | |- C = ( algSc ` U ) | |
| 7 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) | |
| 8 | 1 2 | ply1ascl | |- A = ( algSc ` ( 1o mPoly R ) ) | 
| 9 | eqid | |- ( 1o mPoly H ) = ( 1o mPoly H ) | |
| 10 | 1on | |- 1o e. On | |
| 11 | 10 | a1i | |- ( ph -> 1o e. On ) | 
| 12 | 4 6 | ply1ascl | |- C = ( algSc ` ( 1o mPoly H ) ) | 
| 13 | 7 8 3 9 11 5 12 | subrgascl | |- ( ph -> C = ( A |` T ) ) |