Description: The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subrg1ascl.p | |- P = ( Poly1 ` R ) |
|
subrg1ascl.a | |- A = ( algSc ` P ) |
||
subrg1ascl.h | |- H = ( R |`s T ) |
||
subrg1ascl.u | |- U = ( Poly1 ` H ) |
||
subrg1ascl.r | |- ( ph -> T e. ( SubRing ` R ) ) |
||
subrg1asclcl.b | |- B = ( Base ` U ) |
||
subrg1asclcl.k | |- K = ( Base ` R ) |
||
subrg1asclcl.x | |- ( ph -> X e. K ) |
||
Assertion | subrg1asclcl | |- ( ph -> ( ( A ` X ) e. B <-> X e. T ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrg1ascl.p | |- P = ( Poly1 ` R ) |
|
2 | subrg1ascl.a | |- A = ( algSc ` P ) |
|
3 | subrg1ascl.h | |- H = ( R |`s T ) |
|
4 | subrg1ascl.u | |- U = ( Poly1 ` H ) |
|
5 | subrg1ascl.r | |- ( ph -> T e. ( SubRing ` R ) ) |
|
6 | subrg1asclcl.b | |- B = ( Base ` U ) |
|
7 | subrg1asclcl.k | |- K = ( Base ` R ) |
|
8 | subrg1asclcl.x | |- ( ph -> X e. K ) |
|
9 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
10 | 1 2 | ply1ascl | |- A = ( algSc ` ( 1o mPoly R ) ) |
11 | eqid | |- ( 1o mPoly H ) = ( 1o mPoly H ) |
|
12 | 1on | |- 1o e. On |
|
13 | 12 | a1i | |- ( ph -> 1o e. On ) |
14 | eqid | |- ( PwSer1 ` H ) = ( PwSer1 ` H ) |
|
15 | 4 14 6 | ply1bas | |- B = ( Base ` ( 1o mPoly H ) ) |
16 | 9 10 3 11 13 5 15 7 8 | subrgasclcl | |- ( ph -> ( ( A ` X ) e. B <-> X e. T ) ) |