Metamath Proof Explorer


Theorem subrg1asclcl

Description: The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses subrg1ascl.p
|- P = ( Poly1 ` R )
subrg1ascl.a
|- A = ( algSc ` P )
subrg1ascl.h
|- H = ( R |`s T )
subrg1ascl.u
|- U = ( Poly1 ` H )
subrg1ascl.r
|- ( ph -> T e. ( SubRing ` R ) )
subrg1asclcl.b
|- B = ( Base ` U )
subrg1asclcl.k
|- K = ( Base ` R )
subrg1asclcl.x
|- ( ph -> X e. K )
Assertion subrg1asclcl
|- ( ph -> ( ( A ` X ) e. B <-> X e. T ) )

Proof

Step Hyp Ref Expression
1 subrg1ascl.p
 |-  P = ( Poly1 ` R )
2 subrg1ascl.a
 |-  A = ( algSc ` P )
3 subrg1ascl.h
 |-  H = ( R |`s T )
4 subrg1ascl.u
 |-  U = ( Poly1 ` H )
5 subrg1ascl.r
 |-  ( ph -> T e. ( SubRing ` R ) )
6 subrg1asclcl.b
 |-  B = ( Base ` U )
7 subrg1asclcl.k
 |-  K = ( Base ` R )
8 subrg1asclcl.x
 |-  ( ph -> X e. K )
9 eqid
 |-  ( 1o mPoly R ) = ( 1o mPoly R )
10 1 2 ply1ascl
 |-  A = ( algSc ` ( 1o mPoly R ) )
11 eqid
 |-  ( 1o mPoly H ) = ( 1o mPoly H )
12 1on
 |-  1o e. On
13 12 a1i
 |-  ( ph -> 1o e. On )
14 eqid
 |-  ( PwSer1 ` H ) = ( PwSer1 ` H )
15 4 14 6 ply1bas
 |-  B = ( Base ` ( 1o mPoly H ) )
16 9 10 3 11 13 5 15 7 8 subrgasclcl
 |-  ( ph -> ( ( A ` X ) e. B <-> X e. T ) )