Description: A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrg1cl.a | |- .1. = ( 1r ` R ) |
|
| Assertion | subrg1cl | |- ( A e. ( SubRing ` R ) -> .1. e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrg1cl.a | |- .1. = ( 1r ` R ) |
|
| 2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 3 | 2 1 | issubrg | |- ( A e. ( SubRing ` R ) <-> ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ ( Base ` R ) /\ .1. e. A ) ) ) |
| 4 | 3 | simprbi | |- ( A e. ( SubRing ` R ) -> ( A C_ ( Base ` R ) /\ .1. e. A ) ) |
| 5 | 4 | simprd | |- ( A e. ( SubRing ` R ) -> .1. e. A ) |