Description: A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subrg1cl.a | |- .1. = ( 1r ` R ) |
|
Assertion | subrg1cl | |- ( A e. ( SubRing ` R ) -> .1. e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrg1cl.a | |- .1. = ( 1r ` R ) |
|
2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
3 | 2 1 | issubrg | |- ( A e. ( SubRing ` R ) <-> ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ ( Base ` R ) /\ .1. e. A ) ) ) |
4 | 3 | simprbi | |- ( A e. ( SubRing ` R ) -> ( A C_ ( Base ` R ) /\ .1. e. A ) ) |
5 | 4 | simprd | |- ( A e. ( SubRing ` R ) -> .1. e. A ) |