Metamath Proof Explorer


Theorem subrg1cl

Description: A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypothesis subrg1cl.a
|- .1. = ( 1r ` R )
Assertion subrg1cl
|- ( A e. ( SubRing ` R ) -> .1. e. A )

Proof

Step Hyp Ref Expression
1 subrg1cl.a
 |-  .1. = ( 1r ` R )
2 eqid
 |-  ( Base ` R ) = ( Base ` R )
3 2 1 issubrg
 |-  ( A e. ( SubRing ` R ) <-> ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ ( Base ` R ) /\ .1. e. A ) ) )
4 3 simprbi
 |-  ( A e. ( SubRing ` R ) -> ( A C_ ( Base ` R ) /\ .1. e. A ) )
5 4 simprd
 |-  ( A e. ( SubRing ` R ) -> .1. e. A )