Description: A subring is closed under addition. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrgacl.p | |- .+ = ( +g ` R ) | |
| Assertion | subrgacl | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( X .+ Y ) e. A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | subrgacl.p | |- .+ = ( +g ` R ) | |
| 2 | subrgsubg | |- ( A e. ( SubRing ` R ) -> A e. ( SubGrp ` R ) ) | |
| 3 | 1 | subgcl | |- ( ( A e. ( SubGrp ` R ) /\ X e. A /\ Y e. A ) -> ( X .+ Y ) e. A ) | 
| 4 | 2 3 | syl3an1 | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( X .+ Y ) e. A ) |