Description: A subring is closed under addition. (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subrgacl.p | |- .+ = ( +g ` R ) |
|
Assertion | subrgacl | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( X .+ Y ) e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgacl.p | |- .+ = ( +g ` R ) |
|
2 | subrgsubg | |- ( A e. ( SubRing ` R ) -> A e. ( SubGrp ` R ) ) |
|
3 | 1 | subgcl | |- ( ( A e. ( SubGrp ` R ) /\ X e. A /\ Y e. A ) -> ( X .+ Y ) e. A ) |
4 | 2 3 | syl3an1 | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( X .+ Y ) e. A ) |