Metamath Proof Explorer


Theorem subrgacl

Description: A subring is closed under addition. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypothesis subrgacl.p
|- .+ = ( +g ` R )
Assertion subrgacl
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( X .+ Y ) e. A )

Proof

Step Hyp Ref Expression
1 subrgacl.p
 |-  .+ = ( +g ` R )
2 subrgsubg
 |-  ( A e. ( SubRing ` R ) -> A e. ( SubGrp ` R ) )
3 1 subgcl
 |-  ( ( A e. ( SubGrp ` R ) /\ X e. A /\ Y e. A ) -> ( X .+ Y ) e. A )
4 2 3 syl3an1
 |-  ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( X .+ Y ) e. A )