| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgascl.p |  |-  P = ( I mPoly R ) | 
						
							| 2 |  | subrgascl.a |  |-  A = ( algSc ` P ) | 
						
							| 3 |  | subrgascl.h |  |-  H = ( R |`s T ) | 
						
							| 4 |  | subrgascl.u |  |-  U = ( I mPoly H ) | 
						
							| 5 |  | subrgascl.i |  |-  ( ph -> I e. W ) | 
						
							| 6 |  | subrgascl.r |  |-  ( ph -> T e. ( SubRing ` R ) ) | 
						
							| 7 |  | subrgascl.c |  |-  C = ( algSc ` U ) | 
						
							| 8 |  | eqid |  |-  ( Scalar ` U ) = ( Scalar ` U ) | 
						
							| 9 |  | eqid |  |-  ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) | 
						
							| 10 | 7 8 9 | asclfn |  |-  C Fn ( Base ` ( Scalar ` U ) ) | 
						
							| 11 | 3 | subrgbas |  |-  ( T e. ( SubRing ` R ) -> T = ( Base ` H ) ) | 
						
							| 12 | 6 11 | syl |  |-  ( ph -> T = ( Base ` H ) ) | 
						
							| 13 | 3 | ovexi |  |-  H e. _V | 
						
							| 14 | 13 | a1i |  |-  ( ph -> H e. _V ) | 
						
							| 15 | 4 5 14 | mplsca |  |-  ( ph -> H = ( Scalar ` U ) ) | 
						
							| 16 | 15 | fveq2d |  |-  ( ph -> ( Base ` H ) = ( Base ` ( Scalar ` U ) ) ) | 
						
							| 17 | 12 16 | eqtrd |  |-  ( ph -> T = ( Base ` ( Scalar ` U ) ) ) | 
						
							| 18 | 17 | fneq2d |  |-  ( ph -> ( C Fn T <-> C Fn ( Base ` ( Scalar ` U ) ) ) ) | 
						
							| 19 | 10 18 | mpbiri |  |-  ( ph -> C Fn T ) | 
						
							| 20 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 21 |  | eqid |  |-  ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) | 
						
							| 22 | 2 20 21 | asclfn |  |-  A Fn ( Base ` ( Scalar ` P ) ) | 
						
							| 23 |  | subrgrcl |  |-  ( T e. ( SubRing ` R ) -> R e. Ring ) | 
						
							| 24 | 6 23 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 25 | 1 5 24 | mplsca |  |-  ( ph -> R = ( Scalar ` P ) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) | 
						
							| 27 | 26 | fneq2d |  |-  ( ph -> ( A Fn ( Base ` R ) <-> A Fn ( Base ` ( Scalar ` P ) ) ) ) | 
						
							| 28 | 22 27 | mpbiri |  |-  ( ph -> A Fn ( Base ` R ) ) | 
						
							| 29 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 30 | 29 | subrgss |  |-  ( T e. ( SubRing ` R ) -> T C_ ( Base ` R ) ) | 
						
							| 31 | 6 30 | syl |  |-  ( ph -> T C_ ( Base ` R ) ) | 
						
							| 32 |  | fnssres |  |-  ( ( A Fn ( Base ` R ) /\ T C_ ( Base ` R ) ) -> ( A |` T ) Fn T ) | 
						
							| 33 | 28 31 32 | syl2anc |  |-  ( ph -> ( A |` T ) Fn T ) | 
						
							| 34 |  | fvres |  |-  ( x e. T -> ( ( A |` T ) ` x ) = ( A ` x ) ) | 
						
							| 35 | 34 | adantl |  |-  ( ( ph /\ x e. T ) -> ( ( A |` T ) ` x ) = ( A ` x ) ) | 
						
							| 36 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 37 | 3 36 | subrg0 |  |-  ( T e. ( SubRing ` R ) -> ( 0g ` R ) = ( 0g ` H ) ) | 
						
							| 38 | 6 37 | syl |  |-  ( ph -> ( 0g ` R ) = ( 0g ` H ) ) | 
						
							| 39 | 38 | ifeq2d |  |-  ( ph -> if ( y = ( I X. { 0 } ) , x , ( 0g ` R ) ) = if ( y = ( I X. { 0 } ) , x , ( 0g ` H ) ) ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ph /\ x e. T ) -> if ( y = ( I X. { 0 } ) , x , ( 0g ` R ) ) = if ( y = ( I X. { 0 } ) , x , ( 0g ` H ) ) ) | 
						
							| 41 | 40 | mpteq2dv |  |-  ( ( ph /\ x e. T ) -> ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( I X. { 0 } ) , x , ( 0g ` R ) ) ) = ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( I X. { 0 } ) , x , ( 0g ` H ) ) ) ) | 
						
							| 42 |  | eqid |  |-  { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 43 | 5 | adantr |  |-  ( ( ph /\ x e. T ) -> I e. W ) | 
						
							| 44 | 24 | adantr |  |-  ( ( ph /\ x e. T ) -> R e. Ring ) | 
						
							| 45 | 31 | sselda |  |-  ( ( ph /\ x e. T ) -> x e. ( Base ` R ) ) | 
						
							| 46 | 1 42 36 29 2 43 44 45 | mplascl |  |-  ( ( ph /\ x e. T ) -> ( A ` x ) = ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( I X. { 0 } ) , x , ( 0g ` R ) ) ) ) | 
						
							| 47 |  | eqid |  |-  ( 0g ` H ) = ( 0g ` H ) | 
						
							| 48 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 49 | 3 | subrgring |  |-  ( T e. ( SubRing ` R ) -> H e. Ring ) | 
						
							| 50 | 6 49 | syl |  |-  ( ph -> H e. Ring ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ph /\ x e. T ) -> H e. Ring ) | 
						
							| 52 | 12 | eleq2d |  |-  ( ph -> ( x e. T <-> x e. ( Base ` H ) ) ) | 
						
							| 53 | 52 | biimpa |  |-  ( ( ph /\ x e. T ) -> x e. ( Base ` H ) ) | 
						
							| 54 | 4 42 47 48 7 43 51 53 | mplascl |  |-  ( ( ph /\ x e. T ) -> ( C ` x ) = ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( I X. { 0 } ) , x , ( 0g ` H ) ) ) ) | 
						
							| 55 | 41 46 54 | 3eqtr4d |  |-  ( ( ph /\ x e. T ) -> ( A ` x ) = ( C ` x ) ) | 
						
							| 56 | 35 55 | eqtr2d |  |-  ( ( ph /\ x e. T ) -> ( C ` x ) = ( ( A |` T ) ` x ) ) | 
						
							| 57 | 19 33 56 | eqfnfvd |  |-  ( ph -> C = ( A |` T ) ) |