| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgascl.p |  |-  P = ( I mPoly R ) | 
						
							| 2 |  | subrgascl.a |  |-  A = ( algSc ` P ) | 
						
							| 3 |  | subrgascl.h |  |-  H = ( R |`s T ) | 
						
							| 4 |  | subrgascl.u |  |-  U = ( I mPoly H ) | 
						
							| 5 |  | subrgascl.i |  |-  ( ph -> I e. W ) | 
						
							| 6 |  | subrgascl.r |  |-  ( ph -> T e. ( SubRing ` R ) ) | 
						
							| 7 |  | subrgasclcl.b |  |-  B = ( Base ` U ) | 
						
							| 8 |  | subrgasclcl.k |  |-  K = ( Base ` R ) | 
						
							| 9 |  | subrgasclcl.x |  |-  ( ph -> X e. K ) | 
						
							| 10 |  | iftrue |  |-  ( x = ( I X. { 0 } ) -> if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) = X ) | 
						
							| 11 | 10 | eleq1d |  |-  ( x = ( I X. { 0 } ) -> ( if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) e. ( Base ` H ) <-> X e. ( Base ` H ) ) ) | 
						
							| 12 |  | eqid |  |-  ( I mPwSer H ) = ( I mPwSer H ) | 
						
							| 13 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 14 |  | eqid |  |-  { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 15 |  | eqid |  |-  ( Base ` ( I mPwSer H ) ) = ( Base ` ( I mPwSer H ) ) | 
						
							| 16 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 17 |  | subrgrcl |  |-  ( T e. ( SubRing ` R ) -> R e. Ring ) | 
						
							| 18 | 6 17 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 19 | 1 14 16 8 2 5 18 9 | mplascl |  |-  ( ph -> ( A ` X ) = ( x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ ( A ` X ) e. B ) -> ( A ` X ) = ( x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) ) ) | 
						
							| 21 | 3 | subrgring |  |-  ( T e. ( SubRing ` R ) -> H e. Ring ) | 
						
							| 22 | 6 21 | syl |  |-  ( ph -> H e. Ring ) | 
						
							| 23 | 12 4 7 5 22 | mplsubrg |  |-  ( ph -> B e. ( SubRing ` ( I mPwSer H ) ) ) | 
						
							| 24 | 15 | subrgss |  |-  ( B e. ( SubRing ` ( I mPwSer H ) ) -> B C_ ( Base ` ( I mPwSer H ) ) ) | 
						
							| 25 | 23 24 | syl |  |-  ( ph -> B C_ ( Base ` ( I mPwSer H ) ) ) | 
						
							| 26 | 25 | sselda |  |-  ( ( ph /\ ( A ` X ) e. B ) -> ( A ` X ) e. ( Base ` ( I mPwSer H ) ) ) | 
						
							| 27 | 20 26 | eqeltrrd |  |-  ( ( ph /\ ( A ` X ) e. B ) -> ( x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) ) e. ( Base ` ( I mPwSer H ) ) ) | 
						
							| 28 | 12 13 14 15 27 | psrelbas |  |-  ( ( ph /\ ( A ` X ) e. B ) -> ( x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` H ) ) | 
						
							| 29 |  | eqid |  |-  ( x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) ) = ( x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) ) | 
						
							| 30 | 29 | fmpt |  |-  ( A. x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) e. ( Base ` H ) <-> ( x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` H ) ) | 
						
							| 31 | 28 30 | sylibr |  |-  ( ( ph /\ ( A ` X ) e. B ) -> A. x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) e. ( Base ` H ) ) | 
						
							| 32 | 5 | adantr |  |-  ( ( ph /\ ( A ` X ) e. B ) -> I e. W ) | 
						
							| 33 | 14 | psrbag0 |  |-  ( I e. W -> ( I X. { 0 } ) e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) | 
						
							| 34 | 32 33 | syl |  |-  ( ( ph /\ ( A ` X ) e. B ) -> ( I X. { 0 } ) e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) | 
						
							| 35 | 11 31 34 | rspcdva |  |-  ( ( ph /\ ( A ` X ) e. B ) -> X e. ( Base ` H ) ) | 
						
							| 36 | 3 | subrgbas |  |-  ( T e. ( SubRing ` R ) -> T = ( Base ` H ) ) | 
						
							| 37 | 6 36 | syl |  |-  ( ph -> T = ( Base ` H ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ph /\ ( A ` X ) e. B ) -> T = ( Base ` H ) ) | 
						
							| 39 | 35 38 | eleqtrrd |  |-  ( ( ph /\ ( A ` X ) e. B ) -> X e. T ) | 
						
							| 40 |  | eqid |  |-  ( algSc ` U ) = ( algSc ` U ) | 
						
							| 41 | 1 2 3 4 5 6 40 | subrgascl |  |-  ( ph -> ( algSc ` U ) = ( A |` T ) ) | 
						
							| 42 | 41 | fveq1d |  |-  ( ph -> ( ( algSc ` U ) ` X ) = ( ( A |` T ) ` X ) ) | 
						
							| 43 |  | fvres |  |-  ( X e. T -> ( ( A |` T ) ` X ) = ( A ` X ) ) | 
						
							| 44 | 42 43 | sylan9eq |  |-  ( ( ph /\ X e. T ) -> ( ( algSc ` U ) ` X ) = ( A ` X ) ) | 
						
							| 45 |  | eqid |  |-  ( Scalar ` U ) = ( Scalar ` U ) | 
						
							| 46 | 4 | mplring |  |-  ( ( I e. W /\ H e. Ring ) -> U e. Ring ) | 
						
							| 47 | 4 | mpllmod |  |-  ( ( I e. W /\ H e. Ring ) -> U e. LMod ) | 
						
							| 48 |  | eqid |  |-  ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) | 
						
							| 49 | 40 45 46 47 48 7 | asclf |  |-  ( ( I e. W /\ H e. Ring ) -> ( algSc ` U ) : ( Base ` ( Scalar ` U ) ) --> B ) | 
						
							| 50 | 5 22 49 | syl2anc |  |-  ( ph -> ( algSc ` U ) : ( Base ` ( Scalar ` U ) ) --> B ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ph /\ X e. T ) -> ( algSc ` U ) : ( Base ` ( Scalar ` U ) ) --> B ) | 
						
							| 52 | 4 5 22 | mplsca |  |-  ( ph -> H = ( Scalar ` U ) ) | 
						
							| 53 | 52 | fveq2d |  |-  ( ph -> ( Base ` H ) = ( Base ` ( Scalar ` U ) ) ) | 
						
							| 54 | 37 53 | eqtrd |  |-  ( ph -> T = ( Base ` ( Scalar ` U ) ) ) | 
						
							| 55 | 54 | eleq2d |  |-  ( ph -> ( X e. T <-> X e. ( Base ` ( Scalar ` U ) ) ) ) | 
						
							| 56 | 55 | biimpa |  |-  ( ( ph /\ X e. T ) -> X e. ( Base ` ( Scalar ` U ) ) ) | 
						
							| 57 | 51 56 | ffvelcdmd |  |-  ( ( ph /\ X e. T ) -> ( ( algSc ` U ) ` X ) e. B ) | 
						
							| 58 | 44 57 | eqeltrrd |  |-  ( ( ph /\ X e. T ) -> ( A ` X ) e. B ) | 
						
							| 59 | 39 58 | impbida |  |-  ( ph -> ( ( A ` X ) e. B <-> X e. T ) ) |