Metamath Proof Explorer


Theorem subrgbas

Description: Base set of a subring structure. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypothesis subrgbas.b
|- S = ( R |`s A )
Assertion subrgbas
|- ( A e. ( SubRing ` R ) -> A = ( Base ` S ) )

Proof

Step Hyp Ref Expression
1 subrgbas.b
 |-  S = ( R |`s A )
2 subrgsubg
 |-  ( A e. ( SubRing ` R ) -> A e. ( SubGrp ` R ) )
3 1 subgbas
 |-  ( A e. ( SubGrp ` R ) -> A = ( Base ` S ) )
4 2 3 syl
 |-  ( A e. ( SubRing ` R ) -> A = ( Base ` S ) )