| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgring.1 |
|- S = ( R |`s A ) |
| 2 |
1
|
subrgring |
|- ( A e. ( SubRing ` R ) -> S e. Ring ) |
| 3 |
2
|
adantl |
|- ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> S e. Ring ) |
| 4 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 5 |
1 4
|
mgpress |
|- ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> ( ( mulGrp ` R ) |`s A ) = ( mulGrp ` S ) ) |
| 6 |
4
|
crngmgp |
|- ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) |
| 7 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
| 8 |
7
|
ringmgp |
|- ( S e. Ring -> ( mulGrp ` S ) e. Mnd ) |
| 9 |
3 8
|
syl |
|- ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> ( mulGrp ` S ) e. Mnd ) |
| 10 |
5 9
|
eqeltrd |
|- ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> ( ( mulGrp ` R ) |`s A ) e. Mnd ) |
| 11 |
|
eqid |
|- ( ( mulGrp ` R ) |`s A ) = ( ( mulGrp ` R ) |`s A ) |
| 12 |
11
|
subcmn |
|- ( ( ( mulGrp ` R ) e. CMnd /\ ( ( mulGrp ` R ) |`s A ) e. Mnd ) -> ( ( mulGrp ` R ) |`s A ) e. CMnd ) |
| 13 |
6 10 12
|
syl2an2r |
|- ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> ( ( mulGrp ` R ) |`s A ) e. CMnd ) |
| 14 |
5 13
|
eqeltrrd |
|- ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> ( mulGrp ` S ) e. CMnd ) |
| 15 |
7
|
iscrng |
|- ( S e. CRing <-> ( S e. Ring /\ ( mulGrp ` S ) e. CMnd ) ) |
| 16 |
3 14 15
|
sylanbrc |
|- ( ( R e. CRing /\ A e. ( SubRing ` R ) ) -> S e. CRing ) |