Step |
Hyp |
Ref |
Expression |
1 |
|
subrgdv.1 |
|- S = ( R |`s A ) |
2 |
|
subrgdv.2 |
|- ./ = ( /r ` R ) |
3 |
|
subrgdv.3 |
|- U = ( Unit ` S ) |
4 |
|
subrgdv.4 |
|- E = ( /r ` S ) |
5 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
6 |
|
eqid |
|- ( invr ` S ) = ( invr ` S ) |
7 |
1 5 3 6
|
subrginv |
|- ( ( A e. ( SubRing ` R ) /\ Y e. U ) -> ( ( invr ` R ) ` Y ) = ( ( invr ` S ) ` Y ) ) |
8 |
7
|
3adant2 |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> ( ( invr ` R ) ` Y ) = ( ( invr ` S ) ` Y ) ) |
9 |
8
|
oveq2d |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) = ( X ( .r ` R ) ( ( invr ` S ) ` Y ) ) ) |
10 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
11 |
1 10
|
ressmulr |
|- ( A e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) |
12 |
11
|
3ad2ant1 |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> ( .r ` R ) = ( .r ` S ) ) |
13 |
12
|
oveqd |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> ( X ( .r ` R ) ( ( invr ` S ) ` Y ) ) = ( X ( .r ` S ) ( ( invr ` S ) ` Y ) ) ) |
14 |
9 13
|
eqtrd |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) = ( X ( .r ` S ) ( ( invr ` S ) ` Y ) ) ) |
15 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
16 |
15
|
subrgss |
|- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
17 |
16
|
3ad2ant1 |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> A C_ ( Base ` R ) ) |
18 |
|
simp2 |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> X e. A ) |
19 |
17 18
|
sseldd |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> X e. ( Base ` R ) ) |
20 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
21 |
1 20 3
|
subrguss |
|- ( A e. ( SubRing ` R ) -> U C_ ( Unit ` R ) ) |
22 |
21
|
3ad2ant1 |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> U C_ ( Unit ` R ) ) |
23 |
|
simp3 |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> Y e. U ) |
24 |
22 23
|
sseldd |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> Y e. ( Unit ` R ) ) |
25 |
15 10 20 5 2
|
dvrval |
|- ( ( X e. ( Base ` R ) /\ Y e. ( Unit ` R ) ) -> ( X ./ Y ) = ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) |
26 |
19 24 25
|
syl2anc |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> ( X ./ Y ) = ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) |
27 |
1
|
subrgbas |
|- ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) |
28 |
27
|
3ad2ant1 |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> A = ( Base ` S ) ) |
29 |
18 28
|
eleqtrd |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> X e. ( Base ` S ) ) |
30 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
31 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
32 |
30 31 3 6 4
|
dvrval |
|- ( ( X e. ( Base ` S ) /\ Y e. U ) -> ( X E Y ) = ( X ( .r ` S ) ( ( invr ` S ) ` Y ) ) ) |
33 |
29 23 32
|
syl2anc |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> ( X E Y ) = ( X ( .r ` S ) ( ( invr ` S ) ` Y ) ) ) |
34 |
14 26 33
|
3eqtr4d |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. U ) -> ( X ./ Y ) = ( X E Y ) ) |