Step |
Hyp |
Ref |
Expression |
1 |
|
subrgdvds.1 |
|- S = ( R |`s A ) |
2 |
|
subrgdvds.2 |
|- .|| = ( ||r ` R ) |
3 |
|
subrgdvds.3 |
|- E = ( ||r ` S ) |
4 |
3
|
reldvdsr |
|- Rel E |
5 |
4
|
a1i |
|- ( A e. ( SubRing ` R ) -> Rel E ) |
6 |
1
|
subrgbas |
|- ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) |
7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
8 |
7
|
subrgss |
|- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
9 |
6 8
|
eqsstrrd |
|- ( A e. ( SubRing ` R ) -> ( Base ` S ) C_ ( Base ` R ) ) |
10 |
9
|
sseld |
|- ( A e. ( SubRing ` R ) -> ( x e. ( Base ` S ) -> x e. ( Base ` R ) ) ) |
11 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
12 |
1 11
|
ressmulr |
|- ( A e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) |
13 |
12
|
oveqd |
|- ( A e. ( SubRing ` R ) -> ( z ( .r ` R ) x ) = ( z ( .r ` S ) x ) ) |
14 |
13
|
eqeq1d |
|- ( A e. ( SubRing ` R ) -> ( ( z ( .r ` R ) x ) = y <-> ( z ( .r ` S ) x ) = y ) ) |
15 |
14
|
rexbidv |
|- ( A e. ( SubRing ` R ) -> ( E. z e. ( Base ` S ) ( z ( .r ` R ) x ) = y <-> E. z e. ( Base ` S ) ( z ( .r ` S ) x ) = y ) ) |
16 |
|
ssrexv |
|- ( ( Base ` S ) C_ ( Base ` R ) -> ( E. z e. ( Base ` S ) ( z ( .r ` R ) x ) = y -> E. z e. ( Base ` R ) ( z ( .r ` R ) x ) = y ) ) |
17 |
9 16
|
syl |
|- ( A e. ( SubRing ` R ) -> ( E. z e. ( Base ` S ) ( z ( .r ` R ) x ) = y -> E. z e. ( Base ` R ) ( z ( .r ` R ) x ) = y ) ) |
18 |
15 17
|
sylbird |
|- ( A e. ( SubRing ` R ) -> ( E. z e. ( Base ` S ) ( z ( .r ` S ) x ) = y -> E. z e. ( Base ` R ) ( z ( .r ` R ) x ) = y ) ) |
19 |
10 18
|
anim12d |
|- ( A e. ( SubRing ` R ) -> ( ( x e. ( Base ` S ) /\ E. z e. ( Base ` S ) ( z ( .r ` S ) x ) = y ) -> ( x e. ( Base ` R ) /\ E. z e. ( Base ` R ) ( z ( .r ` R ) x ) = y ) ) ) |
20 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
21 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
22 |
20 3 21
|
dvdsr |
|- ( x E y <-> ( x e. ( Base ` S ) /\ E. z e. ( Base ` S ) ( z ( .r ` S ) x ) = y ) ) |
23 |
7 2 11
|
dvdsr |
|- ( x .|| y <-> ( x e. ( Base ` R ) /\ E. z e. ( Base ` R ) ( z ( .r ` R ) x ) = y ) ) |
24 |
19 22 23
|
3imtr4g |
|- ( A e. ( SubRing ` R ) -> ( x E y -> x .|| y ) ) |
25 |
|
df-br |
|- ( x E y <-> <. x , y >. e. E ) |
26 |
|
df-br |
|- ( x .|| y <-> <. x , y >. e. .|| ) |
27 |
24 25 26
|
3imtr3g |
|- ( A e. ( SubRing ` R ) -> ( <. x , y >. e. E -> <. x , y >. e. .|| ) ) |
28 |
5 27
|
relssdv |
|- ( A e. ( SubRing ` R ) -> E C_ .|| ) |