| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgdvds.1 |  |-  S = ( R |`s A ) | 
						
							| 2 |  | subrgdvds.2 |  |-  .|| = ( ||r ` R ) | 
						
							| 3 |  | subrgdvds.3 |  |-  E = ( ||r ` S ) | 
						
							| 4 | 3 | reldvdsr |  |-  Rel E | 
						
							| 5 | 4 | a1i |  |-  ( A e. ( SubRing ` R ) -> Rel E ) | 
						
							| 6 | 1 | subrgbas |  |-  ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) | 
						
							| 7 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 8 | 7 | subrgss |  |-  ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) | 
						
							| 9 | 6 8 | eqsstrrd |  |-  ( A e. ( SubRing ` R ) -> ( Base ` S ) C_ ( Base ` R ) ) | 
						
							| 10 | 9 | sseld |  |-  ( A e. ( SubRing ` R ) -> ( x e. ( Base ` S ) -> x e. ( Base ` R ) ) ) | 
						
							| 11 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 12 | 1 11 | ressmulr |  |-  ( A e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) | 
						
							| 13 | 12 | oveqd |  |-  ( A e. ( SubRing ` R ) -> ( z ( .r ` R ) x ) = ( z ( .r ` S ) x ) ) | 
						
							| 14 | 13 | eqeq1d |  |-  ( A e. ( SubRing ` R ) -> ( ( z ( .r ` R ) x ) = y <-> ( z ( .r ` S ) x ) = y ) ) | 
						
							| 15 | 14 | rexbidv |  |-  ( A e. ( SubRing ` R ) -> ( E. z e. ( Base ` S ) ( z ( .r ` R ) x ) = y <-> E. z e. ( Base ` S ) ( z ( .r ` S ) x ) = y ) ) | 
						
							| 16 |  | ssrexv |  |-  ( ( Base ` S ) C_ ( Base ` R ) -> ( E. z e. ( Base ` S ) ( z ( .r ` R ) x ) = y -> E. z e. ( Base ` R ) ( z ( .r ` R ) x ) = y ) ) | 
						
							| 17 | 9 16 | syl |  |-  ( A e. ( SubRing ` R ) -> ( E. z e. ( Base ` S ) ( z ( .r ` R ) x ) = y -> E. z e. ( Base ` R ) ( z ( .r ` R ) x ) = y ) ) | 
						
							| 18 | 15 17 | sylbird |  |-  ( A e. ( SubRing ` R ) -> ( E. z e. ( Base ` S ) ( z ( .r ` S ) x ) = y -> E. z e. ( Base ` R ) ( z ( .r ` R ) x ) = y ) ) | 
						
							| 19 | 10 18 | anim12d |  |-  ( A e. ( SubRing ` R ) -> ( ( x e. ( Base ` S ) /\ E. z e. ( Base ` S ) ( z ( .r ` S ) x ) = y ) -> ( x e. ( Base ` R ) /\ E. z e. ( Base ` R ) ( z ( .r ` R ) x ) = y ) ) ) | 
						
							| 20 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 21 |  | eqid |  |-  ( .r ` S ) = ( .r ` S ) | 
						
							| 22 | 20 3 21 | dvdsr |  |-  ( x E y <-> ( x e. ( Base ` S ) /\ E. z e. ( Base ` S ) ( z ( .r ` S ) x ) = y ) ) | 
						
							| 23 | 7 2 11 | dvdsr |  |-  ( x .|| y <-> ( x e. ( Base ` R ) /\ E. z e. ( Base ` R ) ( z ( .r ` R ) x ) = y ) ) | 
						
							| 24 | 19 22 23 | 3imtr4g |  |-  ( A e. ( SubRing ` R ) -> ( x E y -> x .|| y ) ) | 
						
							| 25 |  | df-br |  |-  ( x E y <-> <. x , y >. e. E ) | 
						
							| 26 |  | df-br |  |-  ( x .|| y <-> <. x , y >. e. .|| ) | 
						
							| 27 | 24 25 26 | 3imtr3g |  |-  ( A e. ( SubRing ` R ) -> ( <. x , y >. e. E -> <. x , y >. e. .|| ) ) | 
						
							| 28 | 5 27 | relssdv |  |-  ( A e. ( SubRing ` R ) -> E C_ .|| ) |