Step |
Hyp |
Ref |
Expression |
1 |
|
intprg |
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` R ) ) -> |^| { A , B } = ( A i^i B ) ) |
2 |
|
prssi |
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` R ) ) -> { A , B } C_ ( SubRing ` R ) ) |
3 |
|
prnzg |
|- ( A e. ( SubRing ` R ) -> { A , B } =/= (/) ) |
4 |
3
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` R ) ) -> { A , B } =/= (/) ) |
5 |
|
subrgint |
|- ( ( { A , B } C_ ( SubRing ` R ) /\ { A , B } =/= (/) ) -> |^| { A , B } e. ( SubRing ` R ) ) |
6 |
2 4 5
|
syl2anc |
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` R ) ) -> |^| { A , B } e. ( SubRing ` R ) ) |
7 |
1 6
|
eqeltrrd |
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` R ) ) -> ( A i^i B ) e. ( SubRing ` R ) ) |