Metamath Proof Explorer


Theorem subrgin

Description: The intersection of two subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014) (Revised by Mario Carneiro, 7-Dec-2014)

Ref Expression
Assertion subrgin
|- ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` R ) ) -> ( A i^i B ) e. ( SubRing ` R ) )

Proof

Step Hyp Ref Expression
1 intprg
 |-  ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` R ) ) -> |^| { A , B } = ( A i^i B ) )
2 prssi
 |-  ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` R ) ) -> { A , B } C_ ( SubRing ` R ) )
3 prnzg
 |-  ( A e. ( SubRing ` R ) -> { A , B } =/= (/) )
4 3 adantr
 |-  ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` R ) ) -> { A , B } =/= (/) )
5 subrgint
 |-  ( ( { A , B } C_ ( SubRing ` R ) /\ { A , B } =/= (/) ) -> |^| { A , B } e. ( SubRing ` R ) )
6 2 4 5 syl2anc
 |-  ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` R ) ) -> |^| { A , B } e. ( SubRing ` R ) )
7 1 6 eqeltrrd
 |-  ( ( A e. ( SubRing ` R ) /\ B e. ( SubRing ` R ) ) -> ( A i^i B ) e. ( SubRing ` R ) )