| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgsubg |  |-  ( r e. ( SubRing ` R ) -> r e. ( SubGrp ` R ) ) | 
						
							| 2 | 1 | ssriv |  |-  ( SubRing ` R ) C_ ( SubGrp ` R ) | 
						
							| 3 |  | sstr |  |-  ( ( S C_ ( SubRing ` R ) /\ ( SubRing ` R ) C_ ( SubGrp ` R ) ) -> S C_ ( SubGrp ` R ) ) | 
						
							| 4 | 2 3 | mpan2 |  |-  ( S C_ ( SubRing ` R ) -> S C_ ( SubGrp ` R ) ) | 
						
							| 5 |  | subgint |  |-  ( ( S C_ ( SubGrp ` R ) /\ S =/= (/) ) -> |^| S e. ( SubGrp ` R ) ) | 
						
							| 6 | 4 5 | sylan |  |-  ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) -> |^| S e. ( SubGrp ` R ) ) | 
						
							| 7 |  | ssel2 |  |-  ( ( S C_ ( SubRing ` R ) /\ r e. S ) -> r e. ( SubRing ` R ) ) | 
						
							| 8 | 7 | adantlr |  |-  ( ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) /\ r e. S ) -> r e. ( SubRing ` R ) ) | 
						
							| 9 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 10 | 9 | subrg1cl |  |-  ( r e. ( SubRing ` R ) -> ( 1r ` R ) e. r ) | 
						
							| 11 | 8 10 | syl |  |-  ( ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) /\ r e. S ) -> ( 1r ` R ) e. r ) | 
						
							| 12 | 11 | ralrimiva |  |-  ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) -> A. r e. S ( 1r ` R ) e. r ) | 
						
							| 13 |  | fvex |  |-  ( 1r ` R ) e. _V | 
						
							| 14 | 13 | elint2 |  |-  ( ( 1r ` R ) e. |^| S <-> A. r e. S ( 1r ` R ) e. r ) | 
						
							| 15 | 12 14 | sylibr |  |-  ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) -> ( 1r ` R ) e. |^| S ) | 
						
							| 16 | 8 | adantlr |  |-  ( ( ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> r e. ( SubRing ` R ) ) | 
						
							| 17 |  | simprl |  |-  ( ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> x e. |^| S ) | 
						
							| 18 |  | elinti |  |-  ( x e. |^| S -> ( r e. S -> x e. r ) ) | 
						
							| 19 | 18 | imp |  |-  ( ( x e. |^| S /\ r e. S ) -> x e. r ) | 
						
							| 20 | 17 19 | sylan |  |-  ( ( ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> x e. r ) | 
						
							| 21 |  | simprr |  |-  ( ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> y e. |^| S ) | 
						
							| 22 |  | elinti |  |-  ( y e. |^| S -> ( r e. S -> y e. r ) ) | 
						
							| 23 | 22 | imp |  |-  ( ( y e. |^| S /\ r e. S ) -> y e. r ) | 
						
							| 24 | 21 23 | sylan |  |-  ( ( ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> y e. r ) | 
						
							| 25 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 26 | 25 | subrgmcl |  |-  ( ( r e. ( SubRing ` R ) /\ x e. r /\ y e. r ) -> ( x ( .r ` R ) y ) e. r ) | 
						
							| 27 | 16 20 24 26 | syl3anc |  |-  ( ( ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> ( x ( .r ` R ) y ) e. r ) | 
						
							| 28 | 27 | ralrimiva |  |-  ( ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> A. r e. S ( x ( .r ` R ) y ) e. r ) | 
						
							| 29 |  | ovex |  |-  ( x ( .r ` R ) y ) e. _V | 
						
							| 30 | 29 | elint2 |  |-  ( ( x ( .r ` R ) y ) e. |^| S <-> A. r e. S ( x ( .r ` R ) y ) e. r ) | 
						
							| 31 | 28 30 | sylibr |  |-  ( ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> ( x ( .r ` R ) y ) e. |^| S ) | 
						
							| 32 | 31 | ralrimivva |  |-  ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) -> A. x e. |^| S A. y e. |^| S ( x ( .r ` R ) y ) e. |^| S ) | 
						
							| 33 |  | ssn0 |  |-  ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) -> ( SubRing ` R ) =/= (/) ) | 
						
							| 34 |  | n0 |  |-  ( ( SubRing ` R ) =/= (/) <-> E. r r e. ( SubRing ` R ) ) | 
						
							| 35 |  | subrgrcl |  |-  ( r e. ( SubRing ` R ) -> R e. Ring ) | 
						
							| 36 | 35 | exlimiv |  |-  ( E. r r e. ( SubRing ` R ) -> R e. Ring ) | 
						
							| 37 | 34 36 | sylbi |  |-  ( ( SubRing ` R ) =/= (/) -> R e. Ring ) | 
						
							| 38 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 39 | 38 9 25 | issubrg2 |  |-  ( R e. Ring -> ( |^| S e. ( SubRing ` R ) <-> ( |^| S e. ( SubGrp ` R ) /\ ( 1r ` R ) e. |^| S /\ A. x e. |^| S A. y e. |^| S ( x ( .r ` R ) y ) e. |^| S ) ) ) | 
						
							| 40 | 33 37 39 | 3syl |  |-  ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) -> ( |^| S e. ( SubRing ` R ) <-> ( |^| S e. ( SubGrp ` R ) /\ ( 1r ` R ) e. |^| S /\ A. x e. |^| S A. y e. |^| S ( x ( .r ` R ) y ) e. |^| S ) ) ) | 
						
							| 41 | 6 15 32 40 | mpbir3and |  |-  ( ( S C_ ( SubRing ` R ) /\ S =/= (/) ) -> |^| S e. ( SubRing ` R ) ) |