Step |
Hyp |
Ref |
Expression |
1 |
|
subrginv.1 |
|- S = ( R |`s A ) |
2 |
|
subrginv.2 |
|- I = ( invr ` R ) |
3 |
|
subrginv.3 |
|- U = ( Unit ` S ) |
4 |
|
subrginv.4 |
|- J = ( invr ` S ) |
5 |
|
subrgrcl |
|- ( A e. ( SubRing ` R ) -> R e. Ring ) |
6 |
5
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> R e. Ring ) |
7 |
1
|
subrgbas |
|- ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) |
8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
9 |
8
|
subrgss |
|- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
10 |
7 9
|
eqsstrrd |
|- ( A e. ( SubRing ` R ) -> ( Base ` S ) C_ ( Base ` R ) ) |
11 |
10
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( Base ` S ) C_ ( Base ` R ) ) |
12 |
1
|
subrgring |
|- ( A e. ( SubRing ` R ) -> S e. Ring ) |
13 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
14 |
3 4 13
|
ringinvcl |
|- ( ( S e. Ring /\ X e. U ) -> ( J ` X ) e. ( Base ` S ) ) |
15 |
12 14
|
sylan |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( J ` X ) e. ( Base ` S ) ) |
16 |
11 15
|
sseldd |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( J ` X ) e. ( Base ` R ) ) |
17 |
13 3
|
unitcl |
|- ( X e. U -> X e. ( Base ` S ) ) |
18 |
17
|
adantl |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> X e. ( Base ` S ) ) |
19 |
11 18
|
sseldd |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> X e. ( Base ` R ) ) |
20 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
21 |
1 20 3
|
subrguss |
|- ( A e. ( SubRing ` R ) -> U C_ ( Unit ` R ) ) |
22 |
21
|
sselda |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> X e. ( Unit ` R ) ) |
23 |
20 2 8
|
ringinvcl |
|- ( ( R e. Ring /\ X e. ( Unit ` R ) ) -> ( I ` X ) e. ( Base ` R ) ) |
24 |
5 22 23
|
syl2an2r |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( I ` X ) e. ( Base ` R ) ) |
25 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
26 |
8 25
|
ringass |
|- ( ( R e. Ring /\ ( ( J ` X ) e. ( Base ` R ) /\ X e. ( Base ` R ) /\ ( I ` X ) e. ( Base ` R ) ) ) -> ( ( ( J ` X ) ( .r ` R ) X ) ( .r ` R ) ( I ` X ) ) = ( ( J ` X ) ( .r ` R ) ( X ( .r ` R ) ( I ` X ) ) ) ) |
27 |
6 16 19 24 26
|
syl13anc |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( ( ( J ` X ) ( .r ` R ) X ) ( .r ` R ) ( I ` X ) ) = ( ( J ` X ) ( .r ` R ) ( X ( .r ` R ) ( I ` X ) ) ) ) |
28 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
29 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
30 |
3 4 28 29
|
unitlinv |
|- ( ( S e. Ring /\ X e. U ) -> ( ( J ` X ) ( .r ` S ) X ) = ( 1r ` S ) ) |
31 |
12 30
|
sylan |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( ( J ` X ) ( .r ` S ) X ) = ( 1r ` S ) ) |
32 |
1 25
|
ressmulr |
|- ( A e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) |
33 |
32
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( .r ` R ) = ( .r ` S ) ) |
34 |
33
|
oveqd |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( ( J ` X ) ( .r ` R ) X ) = ( ( J ` X ) ( .r ` S ) X ) ) |
35 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
36 |
1 35
|
subrg1 |
|- ( A e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` S ) ) |
37 |
36
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( 1r ` R ) = ( 1r ` S ) ) |
38 |
31 34 37
|
3eqtr4d |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( ( J ` X ) ( .r ` R ) X ) = ( 1r ` R ) ) |
39 |
38
|
oveq1d |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( ( ( J ` X ) ( .r ` R ) X ) ( .r ` R ) ( I ` X ) ) = ( ( 1r ` R ) ( .r ` R ) ( I ` X ) ) ) |
40 |
20 2 25 35
|
unitrinv |
|- ( ( R e. Ring /\ X e. ( Unit ` R ) ) -> ( X ( .r ` R ) ( I ` X ) ) = ( 1r ` R ) ) |
41 |
5 22 40
|
syl2an2r |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( X ( .r ` R ) ( I ` X ) ) = ( 1r ` R ) ) |
42 |
41
|
oveq2d |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( ( J ` X ) ( .r ` R ) ( X ( .r ` R ) ( I ` X ) ) ) = ( ( J ` X ) ( .r ` R ) ( 1r ` R ) ) ) |
43 |
27 39 42
|
3eqtr3d |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( ( 1r ` R ) ( .r ` R ) ( I ` X ) ) = ( ( J ` X ) ( .r ` R ) ( 1r ` R ) ) ) |
44 |
8 25 35
|
ringlidm |
|- ( ( R e. Ring /\ ( I ` X ) e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) ( I ` X ) ) = ( I ` X ) ) |
45 |
5 24 44
|
syl2an2r |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( ( 1r ` R ) ( .r ` R ) ( I ` X ) ) = ( I ` X ) ) |
46 |
8 25 35
|
ringridm |
|- ( ( R e. Ring /\ ( J ` X ) e. ( Base ` R ) ) -> ( ( J ` X ) ( .r ` R ) ( 1r ` R ) ) = ( J ` X ) ) |
47 |
5 16 46
|
syl2an2r |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( ( J ` X ) ( .r ` R ) ( 1r ` R ) ) = ( J ` X ) ) |
48 |
43 45 47
|
3eqtr3d |
|- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( I ` X ) = ( J ` X ) ) |