Description: A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014) (Proof shortened by AV, 30-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subrgmcl.p | |- .x. = ( .r ` R ) |
|
Assertion | subrgmcl | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( X .x. Y ) e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgmcl.p | |- .x. = ( .r ` R ) |
|
2 | subrgsubrng | |- ( A e. ( SubRing ` R ) -> A e. ( SubRng ` R ) ) |
|
3 | 1 | subrngmcl | |- ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> ( X .x. Y ) e. A ) |
4 | 2 3 | syl3an1 | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( X .x. Y ) e. A ) |