Description: A subring is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014) (Proof shortened by AV, 30-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrgmcl.p | |- .x. = ( .r ` R ) | |
| Assertion | subrgmcl | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( X .x. Y ) e. A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | subrgmcl.p | |- .x. = ( .r ` R ) | |
| 2 | subrgsubrng | |- ( A e. ( SubRing ` R ) -> A e. ( SubRng ` R ) ) | |
| 3 | 1 | subrngmcl | |- ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> ( X .x. Y ) e. A ) | 
| 4 | 2 3 | syl3an1 | |- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( X .x. Y ) e. A ) |