Step |
Hyp |
Ref |
Expression |
1 |
|
subrgmcl.p |
|- .x. = ( .r ` R ) |
2 |
|
eqid |
|- ( R |`s A ) = ( R |`s A ) |
3 |
2
|
subrgring |
|- ( A e. ( SubRing ` R ) -> ( R |`s A ) e. Ring ) |
4 |
3
|
3ad2ant1 |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( R |`s A ) e. Ring ) |
5 |
|
simp2 |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> X e. A ) |
6 |
2
|
subrgbas |
|- ( A e. ( SubRing ` R ) -> A = ( Base ` ( R |`s A ) ) ) |
7 |
6
|
3ad2ant1 |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> A = ( Base ` ( R |`s A ) ) ) |
8 |
5 7
|
eleqtrd |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> X e. ( Base ` ( R |`s A ) ) ) |
9 |
|
simp3 |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> Y e. A ) |
10 |
9 7
|
eleqtrd |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> Y e. ( Base ` ( R |`s A ) ) ) |
11 |
|
eqid |
|- ( Base ` ( R |`s A ) ) = ( Base ` ( R |`s A ) ) |
12 |
|
eqid |
|- ( .r ` ( R |`s A ) ) = ( .r ` ( R |`s A ) ) |
13 |
11 12
|
ringcl |
|- ( ( ( R |`s A ) e. Ring /\ X e. ( Base ` ( R |`s A ) ) /\ Y e. ( Base ` ( R |`s A ) ) ) -> ( X ( .r ` ( R |`s A ) ) Y ) e. ( Base ` ( R |`s A ) ) ) |
14 |
4 8 10 13
|
syl3anc |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( X ( .r ` ( R |`s A ) ) Y ) e. ( Base ` ( R |`s A ) ) ) |
15 |
2 1
|
ressmulr |
|- ( A e. ( SubRing ` R ) -> .x. = ( .r ` ( R |`s A ) ) ) |
16 |
15
|
3ad2ant1 |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> .x. = ( .r ` ( R |`s A ) ) ) |
17 |
16
|
oveqd |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( X .x. Y ) = ( X ( .r ` ( R |`s A ) ) Y ) ) |
18 |
14 17 7
|
3eltr4d |
|- ( ( A e. ( SubRing ` R ) /\ X e. A /\ Y e. A ) -> ( X .x. Y ) e. A ) |