| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgmpl.s |  |-  S = ( I mPoly R ) | 
						
							| 2 |  | subrgmpl.h |  |-  H = ( R |`s T ) | 
						
							| 3 |  | subrgmpl.u |  |-  U = ( I mPoly H ) | 
						
							| 4 |  | subrgmpl.b |  |-  B = ( Base ` U ) | 
						
							| 5 |  | simpl |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> I e. V ) | 
						
							| 6 |  | simpr |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> T e. ( SubRing ` R ) ) | 
						
							| 7 |  | eqid |  |-  ( I mPwSer H ) = ( I mPwSer H ) | 
						
							| 8 |  | eqid |  |-  ( Base ` ( I mPwSer H ) ) = ( Base ` ( I mPwSer H ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 9 | ressmplbas2 |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> B = ( ( Base ` ( I mPwSer H ) ) i^i ( Base ` S ) ) ) | 
						
							| 11 |  | eqid |  |-  ( I mPwSer R ) = ( I mPwSer R ) | 
						
							| 12 | 11 2 7 8 | subrgpsr |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> ( Base ` ( I mPwSer H ) ) e. ( SubRing ` ( I mPwSer R ) ) ) | 
						
							| 13 |  | subrgrcl |  |-  ( T e. ( SubRing ` R ) -> R e. Ring ) | 
						
							| 14 | 13 | adantl |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> R e. Ring ) | 
						
							| 15 | 11 1 9 5 14 | mplsubrg |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> ( Base ` S ) e. ( SubRing ` ( I mPwSer R ) ) ) | 
						
							| 16 |  | subrgin |  |-  ( ( ( Base ` ( I mPwSer H ) ) e. ( SubRing ` ( I mPwSer R ) ) /\ ( Base ` S ) e. ( SubRing ` ( I mPwSer R ) ) ) -> ( ( Base ` ( I mPwSer H ) ) i^i ( Base ` S ) ) e. ( SubRing ` ( I mPwSer R ) ) ) | 
						
							| 17 | 12 15 16 | syl2anc |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> ( ( Base ` ( I mPwSer H ) ) i^i ( Base ` S ) ) e. ( SubRing ` ( I mPwSer R ) ) ) | 
						
							| 18 | 10 17 | eqeltrd |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> B e. ( SubRing ` ( I mPwSer R ) ) ) | 
						
							| 19 |  | inss2 |  |-  ( ( Base ` ( I mPwSer H ) ) i^i ( Base ` S ) ) C_ ( Base ` S ) | 
						
							| 20 | 10 19 | eqsstrdi |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> B C_ ( Base ` S ) ) | 
						
							| 21 | 1 11 9 | mplval2 |  |-  S = ( ( I mPwSer R ) |`s ( Base ` S ) ) | 
						
							| 22 | 21 | subsubrg |  |-  ( ( Base ` S ) e. ( SubRing ` ( I mPwSer R ) ) -> ( B e. ( SubRing ` S ) <-> ( B e. ( SubRing ` ( I mPwSer R ) ) /\ B C_ ( Base ` S ) ) ) ) | 
						
							| 23 | 15 22 | syl |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> ( B e. ( SubRing ` S ) <-> ( B e. ( SubRing ` ( I mPwSer R ) ) /\ B C_ ( Base ` S ) ) ) ) | 
						
							| 24 | 18 20 23 | mpbir2and |  |-  ( ( I e. V /\ T e. ( SubRing ` R ) ) -> B e. ( SubRing ` S ) ) |