| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgmre.b |  |-  B = ( Base ` R ) | 
						
							| 2 | 1 | subrgss |  |-  ( a e. ( SubRing ` R ) -> a C_ B ) | 
						
							| 3 |  | velpw |  |-  ( a e. ~P B <-> a C_ B ) | 
						
							| 4 | 2 3 | sylibr |  |-  ( a e. ( SubRing ` R ) -> a e. ~P B ) | 
						
							| 5 | 4 | a1i |  |-  ( R e. Ring -> ( a e. ( SubRing ` R ) -> a e. ~P B ) ) | 
						
							| 6 | 5 | ssrdv |  |-  ( R e. Ring -> ( SubRing ` R ) C_ ~P B ) | 
						
							| 7 | 1 | subrgid |  |-  ( R e. Ring -> B e. ( SubRing ` R ) ) | 
						
							| 8 |  | subrgint |  |-  ( ( a C_ ( SubRing ` R ) /\ a =/= (/) ) -> |^| a e. ( SubRing ` R ) ) | 
						
							| 9 | 8 | 3adant1 |  |-  ( ( R e. Ring /\ a C_ ( SubRing ` R ) /\ a =/= (/) ) -> |^| a e. ( SubRing ` R ) ) | 
						
							| 10 | 6 7 9 | ismred |  |-  ( R e. Ring -> ( SubRing ` R ) e. ( Moore ` B ) ) |