Step |
Hyp |
Ref |
Expression |
1 |
|
subrgnrg.h |
|- H = ( G |`s A ) |
2 |
|
nrgngp |
|- ( G e. NrmRing -> G e. NrmGrp ) |
3 |
|
subrgsubg |
|- ( A e. ( SubRing ` G ) -> A e. ( SubGrp ` G ) ) |
4 |
1
|
subgngp |
|- ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) -> H e. NrmGrp ) |
5 |
2 3 4
|
syl2an |
|- ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> H e. NrmGrp ) |
6 |
3
|
adantl |
|- ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> A e. ( SubGrp ` G ) ) |
7 |
|
eqid |
|- ( norm ` G ) = ( norm ` G ) |
8 |
|
eqid |
|- ( norm ` H ) = ( norm ` H ) |
9 |
1 7 8
|
subgnm |
|- ( A e. ( SubGrp ` G ) -> ( norm ` H ) = ( ( norm ` G ) |` A ) ) |
10 |
6 9
|
syl |
|- ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> ( norm ` H ) = ( ( norm ` G ) |` A ) ) |
11 |
|
eqid |
|- ( AbsVal ` G ) = ( AbsVal ` G ) |
12 |
7 11
|
nrgabv |
|- ( G e. NrmRing -> ( norm ` G ) e. ( AbsVal ` G ) ) |
13 |
|
eqid |
|- ( AbsVal ` H ) = ( AbsVal ` H ) |
14 |
11 1 13
|
abvres |
|- ( ( ( norm ` G ) e. ( AbsVal ` G ) /\ A e. ( SubRing ` G ) ) -> ( ( norm ` G ) |` A ) e. ( AbsVal ` H ) ) |
15 |
12 14
|
sylan |
|- ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> ( ( norm ` G ) |` A ) e. ( AbsVal ` H ) ) |
16 |
10 15
|
eqeltrd |
|- ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> ( norm ` H ) e. ( AbsVal ` H ) ) |
17 |
8 13
|
isnrg |
|- ( H e. NrmRing <-> ( H e. NrmGrp /\ ( norm ` H ) e. ( AbsVal ` H ) ) ) |
18 |
5 16 17
|
sylanbrc |
|- ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> H e. NrmRing ) |