| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgnrg.h |  |-  H = ( G |`s A ) | 
						
							| 2 |  | nrgngp |  |-  ( G e. NrmRing -> G e. NrmGrp ) | 
						
							| 3 |  | subrgsubg |  |-  ( A e. ( SubRing ` G ) -> A e. ( SubGrp ` G ) ) | 
						
							| 4 | 1 | subgngp |  |-  ( ( G e. NrmGrp /\ A e. ( SubGrp ` G ) ) -> H e. NrmGrp ) | 
						
							| 5 | 2 3 4 | syl2an |  |-  ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> H e. NrmGrp ) | 
						
							| 6 | 3 | adantl |  |-  ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> A e. ( SubGrp ` G ) ) | 
						
							| 7 |  | eqid |  |-  ( norm ` G ) = ( norm ` G ) | 
						
							| 8 |  | eqid |  |-  ( norm ` H ) = ( norm ` H ) | 
						
							| 9 | 1 7 8 | subgnm |  |-  ( A e. ( SubGrp ` G ) -> ( norm ` H ) = ( ( norm ` G ) |` A ) ) | 
						
							| 10 | 6 9 | syl |  |-  ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> ( norm ` H ) = ( ( norm ` G ) |` A ) ) | 
						
							| 11 |  | eqid |  |-  ( AbsVal ` G ) = ( AbsVal ` G ) | 
						
							| 12 | 7 11 | nrgabv |  |-  ( G e. NrmRing -> ( norm ` G ) e. ( AbsVal ` G ) ) | 
						
							| 13 |  | eqid |  |-  ( AbsVal ` H ) = ( AbsVal ` H ) | 
						
							| 14 | 11 1 13 | abvres |  |-  ( ( ( norm ` G ) e. ( AbsVal ` G ) /\ A e. ( SubRing ` G ) ) -> ( ( norm ` G ) |` A ) e. ( AbsVal ` H ) ) | 
						
							| 15 | 12 14 | sylan |  |-  ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> ( ( norm ` G ) |` A ) e. ( AbsVal ` H ) ) | 
						
							| 16 | 10 15 | eqeltrd |  |-  ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> ( norm ` H ) e. ( AbsVal ` H ) ) | 
						
							| 17 | 8 13 | isnrg |  |-  ( H e. NrmRing <-> ( H e. NrmGrp /\ ( norm ` H ) e. ( AbsVal ` H ) ) ) | 
						
							| 18 | 5 16 17 | sylanbrc |  |-  ( ( G e. NrmRing /\ A e. ( SubRing ` G ) ) -> H e. NrmRing ) |