Step |
Hyp |
Ref |
Expression |
1 |
|
subrgnzr.1 |
|- S = ( R |`s A ) |
2 |
1
|
subrgring |
|- ( A e. ( SubRing ` R ) -> S e. Ring ) |
3 |
2
|
adantl |
|- ( ( R e. NzRing /\ A e. ( SubRing ` R ) ) -> S e. Ring ) |
4 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
5 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
6 |
4 5
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
7 |
6
|
adantr |
|- ( ( R e. NzRing /\ A e. ( SubRing ` R ) ) -> ( 1r ` R ) =/= ( 0g ` R ) ) |
8 |
1 4
|
subrg1 |
|- ( A e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` S ) ) |
9 |
8
|
adantl |
|- ( ( R e. NzRing /\ A e. ( SubRing ` R ) ) -> ( 1r ` R ) = ( 1r ` S ) ) |
10 |
1 5
|
subrg0 |
|- ( A e. ( SubRing ` R ) -> ( 0g ` R ) = ( 0g ` S ) ) |
11 |
10
|
adantl |
|- ( ( R e. NzRing /\ A e. ( SubRing ` R ) ) -> ( 0g ` R ) = ( 0g ` S ) ) |
12 |
7 9 11
|
3netr3d |
|- ( ( R e. NzRing /\ A e. ( SubRing ` R ) ) -> ( 1r ` S ) =/= ( 0g ` S ) ) |
13 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
14 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
15 |
13 14
|
isnzr |
|- ( S e. NzRing <-> ( S e. Ring /\ ( 1r ` S ) =/= ( 0g ` S ) ) ) |
16 |
3 12 15
|
sylanbrc |
|- ( ( R e. NzRing /\ A e. ( SubRing ` R ) ) -> S e. NzRing ) |