| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgpropd.1 |  |-  ( ph -> B = ( Base ` K ) ) | 
						
							| 2 |  | subrgpropd.2 |  |-  ( ph -> B = ( Base ` L ) ) | 
						
							| 3 |  | subrgpropd.3 |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) | 
						
							| 4 |  | subrgpropd.4 |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) | 
						
							| 5 | 1 2 3 4 | ringpropd |  |-  ( ph -> ( K e. Ring <-> L e. Ring ) ) | 
						
							| 6 | 1 | ineq2d |  |-  ( ph -> ( s i^i B ) = ( s i^i ( Base ` K ) ) ) | 
						
							| 7 |  | eqid |  |-  ( K |`s s ) = ( K |`s s ) | 
						
							| 8 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 9 | 7 8 | ressbas |  |-  ( s e. _V -> ( s i^i ( Base ` K ) ) = ( Base ` ( K |`s s ) ) ) | 
						
							| 10 | 9 | elv |  |-  ( s i^i ( Base ` K ) ) = ( Base ` ( K |`s s ) ) | 
						
							| 11 | 6 10 | eqtrdi |  |-  ( ph -> ( s i^i B ) = ( Base ` ( K |`s s ) ) ) | 
						
							| 12 | 2 | ineq2d |  |-  ( ph -> ( s i^i B ) = ( s i^i ( Base ` L ) ) ) | 
						
							| 13 |  | eqid |  |-  ( L |`s s ) = ( L |`s s ) | 
						
							| 14 |  | eqid |  |-  ( Base ` L ) = ( Base ` L ) | 
						
							| 15 | 13 14 | ressbas |  |-  ( s e. _V -> ( s i^i ( Base ` L ) ) = ( Base ` ( L |`s s ) ) ) | 
						
							| 16 | 15 | elv |  |-  ( s i^i ( Base ` L ) ) = ( Base ` ( L |`s s ) ) | 
						
							| 17 | 12 16 | eqtrdi |  |-  ( ph -> ( s i^i B ) = ( Base ` ( L |`s s ) ) ) | 
						
							| 18 |  | elinel2 |  |-  ( x e. ( s i^i B ) -> x e. B ) | 
						
							| 19 |  | elinel2 |  |-  ( y e. ( s i^i B ) -> y e. B ) | 
						
							| 20 | 18 19 | anim12i |  |-  ( ( x e. ( s i^i B ) /\ y e. ( s i^i B ) ) -> ( x e. B /\ y e. B ) ) | 
						
							| 21 |  | eqid |  |-  ( +g ` K ) = ( +g ` K ) | 
						
							| 22 | 7 21 | ressplusg |  |-  ( s e. _V -> ( +g ` K ) = ( +g ` ( K |`s s ) ) ) | 
						
							| 23 | 22 | elv |  |-  ( +g ` K ) = ( +g ` ( K |`s s ) ) | 
						
							| 24 | 23 | oveqi |  |-  ( x ( +g ` K ) y ) = ( x ( +g ` ( K |`s s ) ) y ) | 
						
							| 25 |  | eqid |  |-  ( +g ` L ) = ( +g ` L ) | 
						
							| 26 | 13 25 | ressplusg |  |-  ( s e. _V -> ( +g ` L ) = ( +g ` ( L |`s s ) ) ) | 
						
							| 27 | 26 | elv |  |-  ( +g ` L ) = ( +g ` ( L |`s s ) ) | 
						
							| 28 | 27 | oveqi |  |-  ( x ( +g ` L ) y ) = ( x ( +g ` ( L |`s s ) ) y ) | 
						
							| 29 | 3 24 28 | 3eqtr3g |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` ( K |`s s ) ) y ) = ( x ( +g ` ( L |`s s ) ) y ) ) | 
						
							| 30 | 20 29 | sylan2 |  |-  ( ( ph /\ ( x e. ( s i^i B ) /\ y e. ( s i^i B ) ) ) -> ( x ( +g ` ( K |`s s ) ) y ) = ( x ( +g ` ( L |`s s ) ) y ) ) | 
						
							| 31 |  | eqid |  |-  ( .r ` K ) = ( .r ` K ) | 
						
							| 32 | 7 31 | ressmulr |  |-  ( s e. _V -> ( .r ` K ) = ( .r ` ( K |`s s ) ) ) | 
						
							| 33 | 32 | elv |  |-  ( .r ` K ) = ( .r ` ( K |`s s ) ) | 
						
							| 34 | 33 | oveqi |  |-  ( x ( .r ` K ) y ) = ( x ( .r ` ( K |`s s ) ) y ) | 
						
							| 35 |  | eqid |  |-  ( .r ` L ) = ( .r ` L ) | 
						
							| 36 | 13 35 | ressmulr |  |-  ( s e. _V -> ( .r ` L ) = ( .r ` ( L |`s s ) ) ) | 
						
							| 37 | 36 | elv |  |-  ( .r ` L ) = ( .r ` ( L |`s s ) ) | 
						
							| 38 | 37 | oveqi |  |-  ( x ( .r ` L ) y ) = ( x ( .r ` ( L |`s s ) ) y ) | 
						
							| 39 | 4 34 38 | 3eqtr3g |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` ( K |`s s ) ) y ) = ( x ( .r ` ( L |`s s ) ) y ) ) | 
						
							| 40 | 20 39 | sylan2 |  |-  ( ( ph /\ ( x e. ( s i^i B ) /\ y e. ( s i^i B ) ) ) -> ( x ( .r ` ( K |`s s ) ) y ) = ( x ( .r ` ( L |`s s ) ) y ) ) | 
						
							| 41 | 11 17 30 40 | ringpropd |  |-  ( ph -> ( ( K |`s s ) e. Ring <-> ( L |`s s ) e. Ring ) ) | 
						
							| 42 | 5 41 | anbi12d |  |-  ( ph -> ( ( K e. Ring /\ ( K |`s s ) e. Ring ) <-> ( L e. Ring /\ ( L |`s s ) e. Ring ) ) ) | 
						
							| 43 | 1 2 | eqtr3d |  |-  ( ph -> ( Base ` K ) = ( Base ` L ) ) | 
						
							| 44 | 43 | sseq2d |  |-  ( ph -> ( s C_ ( Base ` K ) <-> s C_ ( Base ` L ) ) ) | 
						
							| 45 | 1 2 4 | rngidpropd |  |-  ( ph -> ( 1r ` K ) = ( 1r ` L ) ) | 
						
							| 46 | 45 | eleq1d |  |-  ( ph -> ( ( 1r ` K ) e. s <-> ( 1r ` L ) e. s ) ) | 
						
							| 47 | 44 46 | anbi12d |  |-  ( ph -> ( ( s C_ ( Base ` K ) /\ ( 1r ` K ) e. s ) <-> ( s C_ ( Base ` L ) /\ ( 1r ` L ) e. s ) ) ) | 
						
							| 48 | 42 47 | anbi12d |  |-  ( ph -> ( ( ( K e. Ring /\ ( K |`s s ) e. Ring ) /\ ( s C_ ( Base ` K ) /\ ( 1r ` K ) e. s ) ) <-> ( ( L e. Ring /\ ( L |`s s ) e. Ring ) /\ ( s C_ ( Base ` L ) /\ ( 1r ` L ) e. s ) ) ) ) | 
						
							| 49 |  | eqid |  |-  ( 1r ` K ) = ( 1r ` K ) | 
						
							| 50 | 8 49 | issubrg |  |-  ( s e. ( SubRing ` K ) <-> ( ( K e. Ring /\ ( K |`s s ) e. Ring ) /\ ( s C_ ( Base ` K ) /\ ( 1r ` K ) e. s ) ) ) | 
						
							| 51 |  | eqid |  |-  ( 1r ` L ) = ( 1r ` L ) | 
						
							| 52 | 14 51 | issubrg |  |-  ( s e. ( SubRing ` L ) <-> ( ( L e. Ring /\ ( L |`s s ) e. Ring ) /\ ( s C_ ( Base ` L ) /\ ( 1r ` L ) e. s ) ) ) | 
						
							| 53 | 48 50 52 | 3bitr4g |  |-  ( ph -> ( s e. ( SubRing ` K ) <-> s e. ( SubRing ` L ) ) ) | 
						
							| 54 | 53 | eqrdv |  |-  ( ph -> ( SubRing ` K ) = ( SubRing ` L ) ) |