Description: Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | subrgrcl | |- ( A e. ( SubRing ` R ) -> R e. Ring ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
2 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
3 | 1 2 | issubrg | |- ( A e. ( SubRing ` R ) <-> ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ ( Base ` R ) /\ ( 1r ` R ) e. A ) ) ) |
4 | 3 | simplbi | |- ( A e. ( SubRing ` R ) -> ( R e. Ring /\ ( R |`s A ) e. Ring ) ) |
5 | 4 | simpld | |- ( A e. ( SubRing ` R ) -> R e. Ring ) |