Description: A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subrgring.1 | |- S = ( R |`s A ) |
|
Assertion | subrgring | |- ( A e. ( SubRing ` R ) -> S e. Ring ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgring.1 | |- S = ( R |`s A ) |
|
2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
3 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
4 | 2 3 | issubrg | |- ( A e. ( SubRing ` R ) <-> ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ ( Base ` R ) /\ ( 1r ` R ) e. A ) ) ) |
5 | 4 | simplbi | |- ( A e. ( SubRing ` R ) -> ( R e. Ring /\ ( R |`s A ) e. Ring ) ) |
6 | 5 | simprd | |- ( A e. ( SubRing ` R ) -> ( R |`s A ) e. Ring ) |
7 | 1 6 | eqeltrid | |- ( A e. ( SubRing ` R ) -> S e. Ring ) |