Metamath Proof Explorer


Theorem subrgring

Description: A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypothesis subrgring.1
|- S = ( R |`s A )
Assertion subrgring
|- ( A e. ( SubRing ` R ) -> S e. Ring )

Proof

Step Hyp Ref Expression
1 subrgring.1
 |-  S = ( R |`s A )
2 eqid
 |-  ( Base ` R ) = ( Base ` R )
3 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
4 2 3 issubrg
 |-  ( A e. ( SubRing ` R ) <-> ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ ( Base ` R ) /\ ( 1r ` R ) e. A ) ) )
5 4 simplbi
 |-  ( A e. ( SubRing ` R ) -> ( R e. Ring /\ ( R |`s A ) e. Ring ) )
6 5 simprd
 |-  ( A e. ( SubRing ` R ) -> ( R |`s A ) e. Ring )
7 1 6 eqeltrid
 |-  ( A e. ( SubRing ` R ) -> S e. Ring )