Description: A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrgring.1 | |- S = ( R |`s A ) |
|
| Assertion | subrgring | |- ( A e. ( SubRing ` R ) -> S e. Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgring.1 | |- S = ( R |`s A ) |
|
| 2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 3 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 4 | 2 3 | issubrg | |- ( A e. ( SubRing ` R ) <-> ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ ( Base ` R ) /\ ( 1r ` R ) e. A ) ) ) |
| 5 | 4 | simplbi | |- ( A e. ( SubRing ` R ) -> ( R e. Ring /\ ( R |`s A ) e. Ring ) ) |
| 6 | 5 | simprd | |- ( A e. ( SubRing ` R ) -> ( R |`s A ) e. Ring ) |
| 7 | 1 6 | eqeltrid | |- ( A e. ( SubRing ` R ) -> S e. Ring ) |