Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrgss.1 | |- B = ( Base ` R ) |
|
| Assertion | subrgss | |- ( A e. ( SubRing ` R ) -> A C_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgss.1 | |- B = ( Base ` R ) |
|
| 2 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 3 | 1 2 | issubrg | |- ( A e. ( SubRing ` R ) <-> ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ B /\ ( 1r ` R ) e. A ) ) ) |
| 4 | 3 | simprbi | |- ( A e. ( SubRing ` R ) -> ( A C_ B /\ ( 1r ` R ) e. A ) ) |
| 5 | 4 | simpld | |- ( A e. ( SubRing ` R ) -> A C_ B ) |