Metamath Proof Explorer


Theorem subrgss

Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypothesis subrgss.1
|- B = ( Base ` R )
Assertion subrgss
|- ( A e. ( SubRing ` R ) -> A C_ B )

Proof

Step Hyp Ref Expression
1 subrgss.1
 |-  B = ( Base ` R )
2 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
3 1 2 issubrg
 |-  ( A e. ( SubRing ` R ) <-> ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ B /\ ( 1r ` R ) e. A ) ) )
4 3 simprbi
 |-  ( A e. ( SubRing ` R ) -> ( A C_ B /\ ( 1r ` R ) e. A ) )
5 4 simpld
 |-  ( A e. ( SubRing ` R ) -> A C_ B )