Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subrgss.1 | |- B = ( Base ` R ) |
|
Assertion | subrgss | |- ( A e. ( SubRing ` R ) -> A C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgss.1 | |- B = ( Base ` R ) |
|
2 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
3 | 1 2 | issubrg | |- ( A e. ( SubRing ` R ) <-> ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ B /\ ( 1r ` R ) e. A ) ) ) |
4 | 3 | simprbi | |- ( A e. ( SubRing ` R ) -> ( A C_ B /\ ( 1r ` R ) e. A ) ) |
5 | 4 | simpld | |- ( A e. ( SubRing ` R ) -> A C_ B ) |