| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgrcl |
|- ( A e. ( SubRing ` R ) -> R e. Ring ) |
| 2 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 3 |
1 2
|
syl |
|- ( A e. ( SubRing ` R ) -> R e. Grp ) |
| 4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 5 |
4
|
subrgss |
|- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
| 6 |
|
eqid |
|- ( R |`s A ) = ( R |`s A ) |
| 7 |
6
|
subrgring |
|- ( A e. ( SubRing ` R ) -> ( R |`s A ) e. Ring ) |
| 8 |
|
ringgrp |
|- ( ( R |`s A ) e. Ring -> ( R |`s A ) e. Grp ) |
| 9 |
7 8
|
syl |
|- ( A e. ( SubRing ` R ) -> ( R |`s A ) e. Grp ) |
| 10 |
4
|
issubg |
|- ( A e. ( SubGrp ` R ) <-> ( R e. Grp /\ A C_ ( Base ` R ) /\ ( R |`s A ) e. Grp ) ) |
| 11 |
3 5 9 10
|
syl3anbrc |
|- ( A e. ( SubRing ` R ) -> A e. ( SubGrp ` R ) ) |