Step |
Hyp |
Ref |
Expression |
1 |
|
subrgrcl |
|- ( A e. ( SubRing ` R ) -> R e. Ring ) |
2 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
3 |
1 2
|
syl |
|- ( A e. ( SubRing ` R ) -> R e. Grp ) |
4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
5 |
4
|
subrgss |
|- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
6 |
|
eqid |
|- ( R |`s A ) = ( R |`s A ) |
7 |
6
|
subrgring |
|- ( A e. ( SubRing ` R ) -> ( R |`s A ) e. Ring ) |
8 |
|
ringgrp |
|- ( ( R |`s A ) e. Ring -> ( R |`s A ) e. Grp ) |
9 |
7 8
|
syl |
|- ( A e. ( SubRing ` R ) -> ( R |`s A ) e. Grp ) |
10 |
4
|
issubg |
|- ( A e. ( SubGrp ` R ) <-> ( R e. Grp /\ A C_ ( Base ` R ) /\ ( R |`s A ) e. Grp ) ) |
11 |
3 5 9 10
|
syl3anbrc |
|- ( A e. ( SubRing ` R ) -> A e. ( SubGrp ` R ) ) |