| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgsubm.1 |  |-  M = ( mulGrp ` R ) | 
						
							| 2 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 3 | 2 | subrgss |  |-  ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) | 
						
							| 4 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 5 | 4 | subrg1cl |  |-  ( A e. ( SubRing ` R ) -> ( 1r ` R ) e. A ) | 
						
							| 6 |  | subrgrcl |  |-  ( A e. ( SubRing ` R ) -> R e. Ring ) | 
						
							| 7 |  | eqid |  |-  ( R |`s A ) = ( R |`s A ) | 
						
							| 8 | 7 1 | mgpress |  |-  ( ( R e. Ring /\ A e. ( SubRing ` R ) ) -> ( M |`s A ) = ( mulGrp ` ( R |`s A ) ) ) | 
						
							| 9 | 6 8 | mpancom |  |-  ( A e. ( SubRing ` R ) -> ( M |`s A ) = ( mulGrp ` ( R |`s A ) ) ) | 
						
							| 10 | 7 | subrgring |  |-  ( A e. ( SubRing ` R ) -> ( R |`s A ) e. Ring ) | 
						
							| 11 |  | eqid |  |-  ( mulGrp ` ( R |`s A ) ) = ( mulGrp ` ( R |`s A ) ) | 
						
							| 12 | 11 | ringmgp |  |-  ( ( R |`s A ) e. Ring -> ( mulGrp ` ( R |`s A ) ) e. Mnd ) | 
						
							| 13 | 10 12 | syl |  |-  ( A e. ( SubRing ` R ) -> ( mulGrp ` ( R |`s A ) ) e. Mnd ) | 
						
							| 14 | 9 13 | eqeltrd |  |-  ( A e. ( SubRing ` R ) -> ( M |`s A ) e. Mnd ) | 
						
							| 15 | 1 | ringmgp |  |-  ( R e. Ring -> M e. Mnd ) | 
						
							| 16 | 1 2 | mgpbas |  |-  ( Base ` R ) = ( Base ` M ) | 
						
							| 17 | 1 4 | ringidval |  |-  ( 1r ` R ) = ( 0g ` M ) | 
						
							| 18 |  | eqid |  |-  ( M |`s A ) = ( M |`s A ) | 
						
							| 19 | 16 17 18 | issubm2 |  |-  ( M e. Mnd -> ( A e. ( SubMnd ` M ) <-> ( A C_ ( Base ` R ) /\ ( 1r ` R ) e. A /\ ( M |`s A ) e. Mnd ) ) ) | 
						
							| 20 | 6 15 19 | 3syl |  |-  ( A e. ( SubRing ` R ) -> ( A e. ( SubMnd ` M ) <-> ( A C_ ( Base ` R ) /\ ( 1r ` R ) e. A /\ ( M |`s A ) e. Mnd ) ) ) | 
						
							| 21 | 3 5 14 20 | mpbir3and |  |-  ( A e. ( SubRing ` R ) -> A e. ( SubMnd ` M ) ) |