Step |
Hyp |
Ref |
Expression |
1 |
|
subrgsubm.1 |
|- M = ( mulGrp ` R ) |
2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
3 |
2
|
subrgss |
|- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
4 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
5 |
4
|
subrg1cl |
|- ( A e. ( SubRing ` R ) -> ( 1r ` R ) e. A ) |
6 |
|
subrgrcl |
|- ( A e. ( SubRing ` R ) -> R e. Ring ) |
7 |
|
eqid |
|- ( R |`s A ) = ( R |`s A ) |
8 |
7 1
|
mgpress |
|- ( ( R e. Ring /\ A e. ( SubRing ` R ) ) -> ( M |`s A ) = ( mulGrp ` ( R |`s A ) ) ) |
9 |
6 8
|
mpancom |
|- ( A e. ( SubRing ` R ) -> ( M |`s A ) = ( mulGrp ` ( R |`s A ) ) ) |
10 |
7
|
subrgring |
|- ( A e. ( SubRing ` R ) -> ( R |`s A ) e. Ring ) |
11 |
|
eqid |
|- ( mulGrp ` ( R |`s A ) ) = ( mulGrp ` ( R |`s A ) ) |
12 |
11
|
ringmgp |
|- ( ( R |`s A ) e. Ring -> ( mulGrp ` ( R |`s A ) ) e. Mnd ) |
13 |
10 12
|
syl |
|- ( A e. ( SubRing ` R ) -> ( mulGrp ` ( R |`s A ) ) e. Mnd ) |
14 |
9 13
|
eqeltrd |
|- ( A e. ( SubRing ` R ) -> ( M |`s A ) e. Mnd ) |
15 |
1
|
ringmgp |
|- ( R e. Ring -> M e. Mnd ) |
16 |
1 2
|
mgpbas |
|- ( Base ` R ) = ( Base ` M ) |
17 |
1 4
|
ringidval |
|- ( 1r ` R ) = ( 0g ` M ) |
18 |
|
eqid |
|- ( M |`s A ) = ( M |`s A ) |
19 |
16 17 18
|
issubm2 |
|- ( M e. Mnd -> ( A e. ( SubMnd ` M ) <-> ( A C_ ( Base ` R ) /\ ( 1r ` R ) e. A /\ ( M |`s A ) e. Mnd ) ) ) |
20 |
6 15 19
|
3syl |
|- ( A e. ( SubRing ` R ) -> ( A e. ( SubMnd ` M ) <-> ( A C_ ( Base ` R ) /\ ( 1r ` R ) e. A /\ ( M |`s A ) e. Mnd ) ) ) |
21 |
3 5 14 20
|
mpbir3and |
|- ( A e. ( SubRing ` R ) -> A e. ( SubMnd ` M ) ) |