| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 2 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 3 |
1 2
|
issubrg |
|- ( A e. ( SubRing ` R ) <-> ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ ( Base ` R ) /\ ( 1r ` R ) e. A ) ) ) |
| 4 |
|
ringrng |
|- ( R e. Ring -> R e. Rng ) |
| 5 |
4
|
ad2antrr |
|- ( ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ ( Base ` R ) /\ ( 1r ` R ) e. A ) ) -> R e. Rng ) |
| 6 |
|
ringrng |
|- ( ( R |`s A ) e. Ring -> ( R |`s A ) e. Rng ) |
| 7 |
6
|
ad2antlr |
|- ( ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ ( Base ` R ) /\ ( 1r ` R ) e. A ) ) -> ( R |`s A ) e. Rng ) |
| 8 |
|
simprl |
|- ( ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ ( Base ` R ) /\ ( 1r ` R ) e. A ) ) -> A C_ ( Base ` R ) ) |
| 9 |
1
|
issubrng |
|- ( A e. ( SubRng ` R ) <-> ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ ( Base ` R ) ) ) |
| 10 |
5 7 8 9
|
syl3anbrc |
|- ( ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ ( Base ` R ) /\ ( 1r ` R ) e. A ) ) -> A e. ( SubRng ` R ) ) |
| 11 |
3 10
|
sylbi |
|- ( A e. ( SubRing ` R ) -> A e. ( SubRng ` R ) ) |