| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrgugrp.1 |  |-  S = ( R |`s A ) | 
						
							| 2 |  | subrgugrp.2 |  |-  U = ( Unit ` R ) | 
						
							| 3 |  | subrgugrp.3 |  |-  V = ( Unit ` S ) | 
						
							| 4 |  | subrgugrp.4 |  |-  G = ( ( mulGrp ` R ) |`s U ) | 
						
							| 5 | 1 2 3 | subrguss |  |-  ( A e. ( SubRing ` R ) -> V C_ U ) | 
						
							| 6 | 1 | subrgring |  |-  ( A e. ( SubRing ` R ) -> S e. Ring ) | 
						
							| 7 |  | eqid |  |-  ( 1r ` S ) = ( 1r ` S ) | 
						
							| 8 | 3 7 | 1unit |  |-  ( S e. Ring -> ( 1r ` S ) e. V ) | 
						
							| 9 |  | ne0i |  |-  ( ( 1r ` S ) e. V -> V =/= (/) ) | 
						
							| 10 | 6 8 9 | 3syl |  |-  ( A e. ( SubRing ` R ) -> V =/= (/) ) | 
						
							| 11 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 12 | 1 11 | ressmulr |  |-  ( A e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) | 
						
							| 13 | 12 | 3ad2ant1 |  |-  ( ( A e. ( SubRing ` R ) /\ x e. V /\ y e. V ) -> ( .r ` R ) = ( .r ` S ) ) | 
						
							| 14 | 13 | oveqd |  |-  ( ( A e. ( SubRing ` R ) /\ x e. V /\ y e. V ) -> ( x ( .r ` R ) y ) = ( x ( .r ` S ) y ) ) | 
						
							| 15 |  | eqid |  |-  ( .r ` S ) = ( .r ` S ) | 
						
							| 16 | 3 15 | unitmulcl |  |-  ( ( S e. Ring /\ x e. V /\ y e. V ) -> ( x ( .r ` S ) y ) e. V ) | 
						
							| 17 | 6 16 | syl3an1 |  |-  ( ( A e. ( SubRing ` R ) /\ x e. V /\ y e. V ) -> ( x ( .r ` S ) y ) e. V ) | 
						
							| 18 | 14 17 | eqeltrd |  |-  ( ( A e. ( SubRing ` R ) /\ x e. V /\ y e. V ) -> ( x ( .r ` R ) y ) e. V ) | 
						
							| 19 | 18 | 3expa |  |-  ( ( ( A e. ( SubRing ` R ) /\ x e. V ) /\ y e. V ) -> ( x ( .r ` R ) y ) e. V ) | 
						
							| 20 | 19 | ralrimiva |  |-  ( ( A e. ( SubRing ` R ) /\ x e. V ) -> A. y e. V ( x ( .r ` R ) y ) e. V ) | 
						
							| 21 |  | eqid |  |-  ( invr ` R ) = ( invr ` R ) | 
						
							| 22 |  | eqid |  |-  ( invr ` S ) = ( invr ` S ) | 
						
							| 23 | 1 21 3 22 | subrginv |  |-  ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( ( invr ` R ) ` x ) = ( ( invr ` S ) ` x ) ) | 
						
							| 24 | 3 22 | unitinvcl |  |-  ( ( S e. Ring /\ x e. V ) -> ( ( invr ` S ) ` x ) e. V ) | 
						
							| 25 | 6 24 | sylan |  |-  ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( ( invr ` S ) ` x ) e. V ) | 
						
							| 26 | 23 25 | eqeltrd |  |-  ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( ( invr ` R ) ` x ) e. V ) | 
						
							| 27 | 20 26 | jca |  |-  ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( A. y e. V ( x ( .r ` R ) y ) e. V /\ ( ( invr ` R ) ` x ) e. V ) ) | 
						
							| 28 | 27 | ralrimiva |  |-  ( A e. ( SubRing ` R ) -> A. x e. V ( A. y e. V ( x ( .r ` R ) y ) e. V /\ ( ( invr ` R ) ` x ) e. V ) ) | 
						
							| 29 |  | subrgrcl |  |-  ( A e. ( SubRing ` R ) -> R e. Ring ) | 
						
							| 30 | 2 4 | unitgrp |  |-  ( R e. Ring -> G e. Grp ) | 
						
							| 31 | 2 4 | unitgrpbas |  |-  U = ( Base ` G ) | 
						
							| 32 | 2 | fvexi |  |-  U e. _V | 
						
							| 33 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 34 | 33 11 | mgpplusg |  |-  ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) | 
						
							| 35 | 4 34 | ressplusg |  |-  ( U e. _V -> ( .r ` R ) = ( +g ` G ) ) | 
						
							| 36 | 32 35 | ax-mp |  |-  ( .r ` R ) = ( +g ` G ) | 
						
							| 37 | 2 4 21 | invrfval |  |-  ( invr ` R ) = ( invg ` G ) | 
						
							| 38 | 31 36 37 | issubg2 |  |-  ( G e. Grp -> ( V e. ( SubGrp ` G ) <-> ( V C_ U /\ V =/= (/) /\ A. x e. V ( A. y e. V ( x ( .r ` R ) y ) e. V /\ ( ( invr ` R ) ` x ) e. V ) ) ) ) | 
						
							| 39 | 29 30 38 | 3syl |  |-  ( A e. ( SubRing ` R ) -> ( V e. ( SubGrp ` G ) <-> ( V C_ U /\ V =/= (/) /\ A. x e. V ( A. y e. V ( x ( .r ` R ) y ) e. V /\ ( ( invr ` R ) ` x ) e. V ) ) ) ) | 
						
							| 40 | 5 10 28 39 | mpbir3and |  |-  ( A e. ( SubRing ` R ) -> V e. ( SubGrp ` G ) ) |