Step |
Hyp |
Ref |
Expression |
1 |
|
subrgugrp.1 |
|- S = ( R |`s A ) |
2 |
|
subrgugrp.2 |
|- U = ( Unit ` R ) |
3 |
|
subrgugrp.3 |
|- V = ( Unit ` S ) |
4 |
|
subrgunit.4 |
|- I = ( invr ` R ) |
5 |
1 2 3
|
subrguss |
|- ( A e. ( SubRing ` R ) -> V C_ U ) |
6 |
5
|
sselda |
|- ( ( A e. ( SubRing ` R ) /\ X e. V ) -> X e. U ) |
7 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
8 |
7 3
|
unitcl |
|- ( X e. V -> X e. ( Base ` S ) ) |
9 |
8
|
adantl |
|- ( ( A e. ( SubRing ` R ) /\ X e. V ) -> X e. ( Base ` S ) ) |
10 |
1
|
subrgbas |
|- ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) |
11 |
10
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ X e. V ) -> A = ( Base ` S ) ) |
12 |
9 11
|
eleqtrrd |
|- ( ( A e. ( SubRing ` R ) /\ X e. V ) -> X e. A ) |
13 |
1
|
subrgring |
|- ( A e. ( SubRing ` R ) -> S e. Ring ) |
14 |
|
eqid |
|- ( invr ` S ) = ( invr ` S ) |
15 |
3 14 7
|
ringinvcl |
|- ( ( S e. Ring /\ X e. V ) -> ( ( invr ` S ) ` X ) e. ( Base ` S ) ) |
16 |
13 15
|
sylan |
|- ( ( A e. ( SubRing ` R ) /\ X e. V ) -> ( ( invr ` S ) ` X ) e. ( Base ` S ) ) |
17 |
1 4 3 14
|
subrginv |
|- ( ( A e. ( SubRing ` R ) /\ X e. V ) -> ( I ` X ) = ( ( invr ` S ) ` X ) ) |
18 |
16 17 11
|
3eltr4d |
|- ( ( A e. ( SubRing ` R ) /\ X e. V ) -> ( I ` X ) e. A ) |
19 |
6 12 18
|
3jca |
|- ( ( A e. ( SubRing ` R ) /\ X e. V ) -> ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) |
20 |
|
simpr2 |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> X e. A ) |
21 |
10
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> A = ( Base ` S ) ) |
22 |
20 21
|
eleqtrd |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> X e. ( Base ` S ) ) |
23 |
|
simpr3 |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( I ` X ) e. A ) |
24 |
23 21
|
eleqtrd |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( I ` X ) e. ( Base ` S ) ) |
25 |
|
eqid |
|- ( ||r ` S ) = ( ||r ` S ) |
26 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
27 |
7 25 26
|
dvdsrmul |
|- ( ( X e. ( Base ` S ) /\ ( I ` X ) e. ( Base ` S ) ) -> X ( ||r ` S ) ( ( I ` X ) ( .r ` S ) X ) ) |
28 |
22 24 27
|
syl2anc |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> X ( ||r ` S ) ( ( I ` X ) ( .r ` S ) X ) ) |
29 |
|
subrgrcl |
|- ( A e. ( SubRing ` R ) -> R e. Ring ) |
30 |
29
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> R e. Ring ) |
31 |
|
simpr1 |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> X e. U ) |
32 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
33 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
34 |
2 4 32 33
|
unitlinv |
|- ( ( R e. Ring /\ X e. U ) -> ( ( I ` X ) ( .r ` R ) X ) = ( 1r ` R ) ) |
35 |
30 31 34
|
syl2anc |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( ( I ` X ) ( .r ` R ) X ) = ( 1r ` R ) ) |
36 |
1 32
|
ressmulr |
|- ( A e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) |
37 |
36
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( .r ` R ) = ( .r ` S ) ) |
38 |
37
|
oveqd |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( ( I ` X ) ( .r ` R ) X ) = ( ( I ` X ) ( .r ` S ) X ) ) |
39 |
1 33
|
subrg1 |
|- ( A e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` S ) ) |
40 |
39
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( 1r ` R ) = ( 1r ` S ) ) |
41 |
35 38 40
|
3eqtr3d |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( ( I ` X ) ( .r ` S ) X ) = ( 1r ` S ) ) |
42 |
28 41
|
breqtrd |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> X ( ||r ` S ) ( 1r ` S ) ) |
43 |
|
eqid |
|- ( oppR ` S ) = ( oppR ` S ) |
44 |
43 7
|
opprbas |
|- ( Base ` S ) = ( Base ` ( oppR ` S ) ) |
45 |
|
eqid |
|- ( ||r ` ( oppR ` S ) ) = ( ||r ` ( oppR ` S ) ) |
46 |
|
eqid |
|- ( .r ` ( oppR ` S ) ) = ( .r ` ( oppR ` S ) ) |
47 |
44 45 46
|
dvdsrmul |
|- ( ( X e. ( Base ` S ) /\ ( I ` X ) e. ( Base ` S ) ) -> X ( ||r ` ( oppR ` S ) ) ( ( I ` X ) ( .r ` ( oppR ` S ) ) X ) ) |
48 |
22 24 47
|
syl2anc |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> X ( ||r ` ( oppR ` S ) ) ( ( I ` X ) ( .r ` ( oppR ` S ) ) X ) ) |
49 |
7 26 43 46
|
opprmul |
|- ( ( I ` X ) ( .r ` ( oppR ` S ) ) X ) = ( X ( .r ` S ) ( I ` X ) ) |
50 |
2 4 32 33
|
unitrinv |
|- ( ( R e. Ring /\ X e. U ) -> ( X ( .r ` R ) ( I ` X ) ) = ( 1r ` R ) ) |
51 |
30 31 50
|
syl2anc |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( X ( .r ` R ) ( I ` X ) ) = ( 1r ` R ) ) |
52 |
37
|
oveqd |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( X ( .r ` R ) ( I ` X ) ) = ( X ( .r ` S ) ( I ` X ) ) ) |
53 |
51 52 40
|
3eqtr3d |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( X ( .r ` S ) ( I ` X ) ) = ( 1r ` S ) ) |
54 |
49 53
|
eqtrid |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> ( ( I ` X ) ( .r ` ( oppR ` S ) ) X ) = ( 1r ` S ) ) |
55 |
48 54
|
breqtrd |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> X ( ||r ` ( oppR ` S ) ) ( 1r ` S ) ) |
56 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
57 |
3 56 25 43 45
|
isunit |
|- ( X e. V <-> ( X ( ||r ` S ) ( 1r ` S ) /\ X ( ||r ` ( oppR ` S ) ) ( 1r ` S ) ) ) |
58 |
42 55 57
|
sylanbrc |
|- ( ( A e. ( SubRing ` R ) /\ ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) -> X e. V ) |
59 |
19 58
|
impbida |
|- ( A e. ( SubRing ` R ) -> ( X e. V <-> ( X e. U /\ X e. A /\ ( I ` X ) e. A ) ) ) |