Step |
Hyp |
Ref |
Expression |
1 |
|
subrguss.1 |
|- S = ( R |`s A ) |
2 |
|
subrguss.2 |
|- U = ( Unit ` R ) |
3 |
|
subrguss.3 |
|- V = ( Unit ` S ) |
4 |
|
simpr |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> x e. V ) |
5 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
6 |
|
eqid |
|- ( ||r ` S ) = ( ||r ` S ) |
7 |
|
eqid |
|- ( oppR ` S ) = ( oppR ` S ) |
8 |
|
eqid |
|- ( ||r ` ( oppR ` S ) ) = ( ||r ` ( oppR ` S ) ) |
9 |
3 5 6 7 8
|
isunit |
|- ( x e. V <-> ( x ( ||r ` S ) ( 1r ` S ) /\ x ( ||r ` ( oppR ` S ) ) ( 1r ` S ) ) ) |
10 |
4 9
|
sylib |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( x ( ||r ` S ) ( 1r ` S ) /\ x ( ||r ` ( oppR ` S ) ) ( 1r ` S ) ) ) |
11 |
10
|
simpld |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> x ( ||r ` S ) ( 1r ` S ) ) |
12 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
13 |
1 12
|
subrg1 |
|- ( A e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` S ) ) |
14 |
13
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( 1r ` R ) = ( 1r ` S ) ) |
15 |
11 14
|
breqtrrd |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> x ( ||r ` S ) ( 1r ` R ) ) |
16 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
17 |
1 16 6
|
subrgdvds |
|- ( A e. ( SubRing ` R ) -> ( ||r ` S ) C_ ( ||r ` R ) ) |
18 |
17
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( ||r ` S ) C_ ( ||r ` R ) ) |
19 |
18
|
ssbrd |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( x ( ||r ` S ) ( 1r ` R ) -> x ( ||r ` R ) ( 1r ` R ) ) ) |
20 |
15 19
|
mpd |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> x ( ||r ` R ) ( 1r ` R ) ) |
21 |
1
|
subrgbas |
|- ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) |
22 |
21
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> A = ( Base ` S ) ) |
23 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
24 |
23
|
subrgss |
|- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
25 |
24
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> A C_ ( Base ` R ) ) |
26 |
22 25
|
eqsstrrd |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( Base ` S ) C_ ( Base ` R ) ) |
27 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
28 |
27 3
|
unitcl |
|- ( x e. V -> x e. ( Base ` S ) ) |
29 |
28
|
adantl |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> x e. ( Base ` S ) ) |
30 |
26 29
|
sseldd |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> x e. ( Base ` R ) ) |
31 |
1
|
subrgring |
|- ( A e. ( SubRing ` R ) -> S e. Ring ) |
32 |
|
eqid |
|- ( invr ` S ) = ( invr ` S ) |
33 |
3 32 27
|
ringinvcl |
|- ( ( S e. Ring /\ x e. V ) -> ( ( invr ` S ) ` x ) e. ( Base ` S ) ) |
34 |
31 33
|
sylan |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( ( invr ` S ) ` x ) e. ( Base ` S ) ) |
35 |
26 34
|
sseldd |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( ( invr ` S ) ` x ) e. ( Base ` R ) ) |
36 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
37 |
36 23
|
opprbas |
|- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
38 |
|
eqid |
|- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
39 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
40 |
37 38 39
|
dvdsrmul |
|- ( ( x e. ( Base ` R ) /\ ( ( invr ` S ) ` x ) e. ( Base ` R ) ) -> x ( ||r ` ( oppR ` R ) ) ( ( ( invr ` S ) ` x ) ( .r ` ( oppR ` R ) ) x ) ) |
41 |
30 35 40
|
syl2anc |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> x ( ||r ` ( oppR ` R ) ) ( ( ( invr ` S ) ` x ) ( .r ` ( oppR ` R ) ) x ) ) |
42 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
43 |
23 42 36 39
|
opprmul |
|- ( ( ( invr ` S ) ` x ) ( .r ` ( oppR ` R ) ) x ) = ( x ( .r ` R ) ( ( invr ` S ) ` x ) ) |
44 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
45 |
3 32 44 5
|
unitrinv |
|- ( ( S e. Ring /\ x e. V ) -> ( x ( .r ` S ) ( ( invr ` S ) ` x ) ) = ( 1r ` S ) ) |
46 |
31 45
|
sylan |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( x ( .r ` S ) ( ( invr ` S ) ` x ) ) = ( 1r ` S ) ) |
47 |
1 42
|
ressmulr |
|- ( A e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) |
48 |
47
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( .r ` R ) = ( .r ` S ) ) |
49 |
48
|
oveqd |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( x ( .r ` R ) ( ( invr ` S ) ` x ) ) = ( x ( .r ` S ) ( ( invr ` S ) ` x ) ) ) |
50 |
46 49 14
|
3eqtr4d |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( x ( .r ` R ) ( ( invr ` S ) ` x ) ) = ( 1r ` R ) ) |
51 |
43 50
|
eqtrid |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( ( ( invr ` S ) ` x ) ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) |
52 |
41 51
|
breqtrd |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
53 |
2 12 16 36 38
|
isunit |
|- ( x e. U <-> ( x ( ||r ` R ) ( 1r ` R ) /\ x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
54 |
20 52 53
|
sylanbrc |
|- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> x e. U ) |
55 |
54
|
ex |
|- ( A e. ( SubRing ` R ) -> ( x e. V -> x e. U ) ) |
56 |
55
|
ssrdv |
|- ( A e. ( SubRing ` R ) -> V C_ U ) |