Step |
Hyp |
Ref |
Expression |
1 |
|
subrgvr1.x |
|- X = ( var1 ` R ) |
2 |
|
subrgvr1.r |
|- ( ph -> T e. ( SubRing ` R ) ) |
3 |
|
subrgvr1.h |
|- H = ( R |`s T ) |
4 |
|
eqid |
|- ( 1o mVar R ) = ( 1o mVar R ) |
5 |
|
1on |
|- 1o e. On |
6 |
5
|
a1i |
|- ( ph -> 1o e. On ) |
7 |
4 6 2 3
|
subrgmvr |
|- ( ph -> ( 1o mVar R ) = ( 1o mVar H ) ) |
8 |
7
|
fveq1d |
|- ( ph -> ( ( 1o mVar R ) ` (/) ) = ( ( 1o mVar H ) ` (/) ) ) |
9 |
1
|
vr1val |
|- X = ( ( 1o mVar R ) ` (/) ) |
10 |
|
eqid |
|- ( var1 ` H ) = ( var1 ` H ) |
11 |
10
|
vr1val |
|- ( var1 ` H ) = ( ( 1o mVar H ) ` (/) ) |
12 |
8 9 11
|
3eqtr4g |
|- ( ph -> X = ( var1 ` H ) ) |