Metamath Proof Explorer


Theorem subrgvr1cl

Description: The variables in a polynomial algebra are contained in every subring algebra. (Contributed by Mario Carneiro, 5-Jul-2015)

Ref Expression
Hypotheses subrgvr1.x
|- X = ( var1 ` R )
subrgvr1.r
|- ( ph -> T e. ( SubRing ` R ) )
subrgvr1.h
|- H = ( R |`s T )
subrgvr1cl.u
|- U = ( Poly1 ` H )
subrgvr1cl.b
|- B = ( Base ` U )
Assertion subrgvr1cl
|- ( ph -> X e. B )

Proof

Step Hyp Ref Expression
1 subrgvr1.x
 |-  X = ( var1 ` R )
2 subrgvr1.r
 |-  ( ph -> T e. ( SubRing ` R ) )
3 subrgvr1.h
 |-  H = ( R |`s T )
4 subrgvr1cl.u
 |-  U = ( Poly1 ` H )
5 subrgvr1cl.b
 |-  B = ( Base ` U )
6 1 vr1val
 |-  X = ( ( 1o mVar R ) ` (/) )
7 eqid
 |-  ( 1o mVar R ) = ( 1o mVar R )
8 1on
 |-  1o e. On
9 8 a1i
 |-  ( ph -> 1o e. On )
10 eqid
 |-  ( 1o mPoly H ) = ( 1o mPoly H )
11 eqid
 |-  ( PwSer1 ` H ) = ( PwSer1 ` H )
12 4 11 5 ply1bas
 |-  B = ( Base ` ( 1o mPoly H ) )
13 7 9 2 3 10 12 subrgmvrf
 |-  ( ph -> ( 1o mVar R ) : 1o --> B )
14 0lt1o
 |-  (/) e. 1o
15 ffvelrn
 |-  ( ( ( 1o mVar R ) : 1o --> B /\ (/) e. 1o ) -> ( ( 1o mVar R ) ` (/) ) e. B )
16 13 14 15 sylancl
 |-  ( ph -> ( ( 1o mVar R ) ` (/) ) e. B )
17 6 16 eqeltrid
 |-  ( ph -> X e. B )