Step |
Hyp |
Ref |
Expression |
1 |
|
subrgvr1.x |
|- X = ( var1 ` R ) |
2 |
|
subrgvr1.r |
|- ( ph -> T e. ( SubRing ` R ) ) |
3 |
|
subrgvr1.h |
|- H = ( R |`s T ) |
4 |
|
subrgvr1cl.u |
|- U = ( Poly1 ` H ) |
5 |
|
subrgvr1cl.b |
|- B = ( Base ` U ) |
6 |
1
|
vr1val |
|- X = ( ( 1o mVar R ) ` (/) ) |
7 |
|
eqid |
|- ( 1o mVar R ) = ( 1o mVar R ) |
8 |
|
1on |
|- 1o e. On |
9 |
8
|
a1i |
|- ( ph -> 1o e. On ) |
10 |
|
eqid |
|- ( 1o mPoly H ) = ( 1o mPoly H ) |
11 |
|
eqid |
|- ( PwSer1 ` H ) = ( PwSer1 ` H ) |
12 |
4 11 5
|
ply1bas |
|- B = ( Base ` ( 1o mPoly H ) ) |
13 |
7 9 2 3 10 12
|
subrgmvrf |
|- ( ph -> ( 1o mVar R ) : 1o --> B ) |
14 |
|
0lt1o |
|- (/) e. 1o |
15 |
|
ffvelrn |
|- ( ( ( 1o mVar R ) : 1o --> B /\ (/) e. 1o ) -> ( ( 1o mVar R ) ` (/) ) e. B ) |
16 |
13 14 15
|
sylancl |
|- ( ph -> ( ( 1o mVar R ) ` (/) ) e. B ) |
17 |
6 16
|
eqeltrid |
|- ( ph -> X e. B ) |