Description: Base set of a subring structure. (Contributed by AV, 14-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrng0.1 | |- S = ( R |`s A ) | |
| Assertion | subrngbas | |- ( A e. ( SubRng ` R ) -> A = ( Base ` S ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | subrng0.1 | |- S = ( R |`s A ) | |
| 2 | subrngsubg | |- ( A e. ( SubRng ` R ) -> A e. ( SubGrp ` R ) ) | |
| 3 | 1 | subgbas | |- ( A e. ( SubGrp ` R ) -> A = ( Base ` S ) ) | 
| 4 | 2 3 | syl | |- ( A e. ( SubRng ` R ) -> A = ( Base ` S ) ) |