Description: Every non-unital ring is a subring of itself. (Contributed by AV, 14-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrngss.1 | |- B = ( Base ` R ) |
|
| Assertion | subrngid | |- ( R e. Rng -> B e. ( SubRng ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrngss.1 | |- B = ( Base ` R ) |
|
| 2 | id | |- ( R e. Rng -> R e. Rng ) |
|
| 3 | 1 | ressid | |- ( R e. Rng -> ( R |`s B ) = R ) |
| 4 | 3 2 | eqeltrd | |- ( R e. Rng -> ( R |`s B ) e. Rng ) |
| 5 | ssidd | |- ( R e. Rng -> B C_ B ) |
|
| 6 | 1 | issubrng | |- ( B e. ( SubRng ` R ) <-> ( R e. Rng /\ ( R |`s B ) e. Rng /\ B C_ B ) ) |
| 7 | 2 4 5 6 | syl3anbrc | |- ( R e. Rng -> B e. ( SubRng ` R ) ) |