Metamath Proof Explorer


Theorem subrngin

Description: The intersection of two subrings is a subring. (Contributed by AV, 15-Feb-2025)

Ref Expression
Assertion subrngin
|- ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> ( A i^i B ) e. ( SubRng ` R ) )

Proof

Step Hyp Ref Expression
1 intprg
 |-  ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> |^| { A , B } = ( A i^i B ) )
2 prssi
 |-  ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> { A , B } C_ ( SubRng ` R ) )
3 prnzg
 |-  ( A e. ( SubRng ` R ) -> { A , B } =/= (/) )
4 3 adantr
 |-  ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> { A , B } =/= (/) )
5 subrngint
 |-  ( ( { A , B } C_ ( SubRng ` R ) /\ { A , B } =/= (/) ) -> |^| { A , B } e. ( SubRng ` R ) )
6 2 4 5 syl2anc
 |-  ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> |^| { A , B } e. ( SubRng ` R ) )
7 1 6 eqeltrrd
 |-  ( ( A e. ( SubRng ` R ) /\ B e. ( SubRng ` R ) ) -> ( A i^i B ) e. ( SubRng ` R ) )