Step |
Hyp |
Ref |
Expression |
1 |
|
subrngsubg |
|- ( r e. ( SubRng ` R ) -> r e. ( SubGrp ` R ) ) |
2 |
1
|
ssriv |
|- ( SubRng ` R ) C_ ( SubGrp ` R ) |
3 |
|
sstr |
|- ( ( S C_ ( SubRng ` R ) /\ ( SubRng ` R ) C_ ( SubGrp ` R ) ) -> S C_ ( SubGrp ` R ) ) |
4 |
2 3
|
mpan2 |
|- ( S C_ ( SubRng ` R ) -> S C_ ( SubGrp ` R ) ) |
5 |
|
subgint |
|- ( ( S C_ ( SubGrp ` R ) /\ S =/= (/) ) -> |^| S e. ( SubGrp ` R ) ) |
6 |
4 5
|
sylan |
|- ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> |^| S e. ( SubGrp ` R ) ) |
7 |
|
ssel2 |
|- ( ( S C_ ( SubRng ` R ) /\ r e. S ) -> r e. ( SubRng ` R ) ) |
8 |
7
|
ad4ant14 |
|- ( ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> r e. ( SubRng ` R ) ) |
9 |
|
simprl |
|- ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> x e. |^| S ) |
10 |
|
elinti |
|- ( x e. |^| S -> ( r e. S -> x e. r ) ) |
11 |
10
|
imp |
|- ( ( x e. |^| S /\ r e. S ) -> x e. r ) |
12 |
9 11
|
sylan |
|- ( ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> x e. r ) |
13 |
|
simprr |
|- ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> y e. |^| S ) |
14 |
|
elinti |
|- ( y e. |^| S -> ( r e. S -> y e. r ) ) |
15 |
14
|
imp |
|- ( ( y e. |^| S /\ r e. S ) -> y e. r ) |
16 |
13 15
|
sylan |
|- ( ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> y e. r ) |
17 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
18 |
17
|
subrngmcl |
|- ( ( r e. ( SubRng ` R ) /\ x e. r /\ y e. r ) -> ( x ( .r ` R ) y ) e. r ) |
19 |
8 12 16 18
|
syl3anc |
|- ( ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> ( x ( .r ` R ) y ) e. r ) |
20 |
19
|
ralrimiva |
|- ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> A. r e. S ( x ( .r ` R ) y ) e. r ) |
21 |
|
ovex |
|- ( x ( .r ` R ) y ) e. _V |
22 |
21
|
elint2 |
|- ( ( x ( .r ` R ) y ) e. |^| S <-> A. r e. S ( x ( .r ` R ) y ) e. r ) |
23 |
20 22
|
sylibr |
|- ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> ( x ( .r ` R ) y ) e. |^| S ) |
24 |
23
|
ralrimivva |
|- ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> A. x e. |^| S A. y e. |^| S ( x ( .r ` R ) y ) e. |^| S ) |
25 |
|
ssn0 |
|- ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> ( SubRng ` R ) =/= (/) ) |
26 |
|
n0 |
|- ( ( SubRng ` R ) =/= (/) <-> E. r r e. ( SubRng ` R ) ) |
27 |
|
subrngrcl |
|- ( r e. ( SubRng ` R ) -> R e. Rng ) |
28 |
27
|
exlimiv |
|- ( E. r r e. ( SubRng ` R ) -> R e. Rng ) |
29 |
26 28
|
sylbi |
|- ( ( SubRng ` R ) =/= (/) -> R e. Rng ) |
30 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
31 |
30 17
|
issubrng2 |
|- ( R e. Rng -> ( |^| S e. ( SubRng ` R ) <-> ( |^| S e. ( SubGrp ` R ) /\ A. x e. |^| S A. y e. |^| S ( x ( .r ` R ) y ) e. |^| S ) ) ) |
32 |
25 29 31
|
3syl |
|- ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> ( |^| S e. ( SubRng ` R ) <-> ( |^| S e. ( SubGrp ` R ) /\ A. x e. |^| S A. y e. |^| S ( x ( .r ` R ) y ) e. |^| S ) ) ) |
33 |
6 24 32
|
mpbir2and |
|- ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> |^| S e. ( SubRng ` R ) ) |