| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrngsubg |
|- ( r e. ( SubRng ` R ) -> r e. ( SubGrp ` R ) ) |
| 2 |
1
|
ssriv |
|- ( SubRng ` R ) C_ ( SubGrp ` R ) |
| 3 |
|
sstr |
|- ( ( S C_ ( SubRng ` R ) /\ ( SubRng ` R ) C_ ( SubGrp ` R ) ) -> S C_ ( SubGrp ` R ) ) |
| 4 |
2 3
|
mpan2 |
|- ( S C_ ( SubRng ` R ) -> S C_ ( SubGrp ` R ) ) |
| 5 |
|
subgint |
|- ( ( S C_ ( SubGrp ` R ) /\ S =/= (/) ) -> |^| S e. ( SubGrp ` R ) ) |
| 6 |
4 5
|
sylan |
|- ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> |^| S e. ( SubGrp ` R ) ) |
| 7 |
|
ssel2 |
|- ( ( S C_ ( SubRng ` R ) /\ r e. S ) -> r e. ( SubRng ` R ) ) |
| 8 |
7
|
ad4ant14 |
|- ( ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> r e. ( SubRng ` R ) ) |
| 9 |
|
simprl |
|- ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> x e. |^| S ) |
| 10 |
|
elinti |
|- ( x e. |^| S -> ( r e. S -> x e. r ) ) |
| 11 |
10
|
imp |
|- ( ( x e. |^| S /\ r e. S ) -> x e. r ) |
| 12 |
9 11
|
sylan |
|- ( ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> x e. r ) |
| 13 |
|
simprr |
|- ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> y e. |^| S ) |
| 14 |
|
elinti |
|- ( y e. |^| S -> ( r e. S -> y e. r ) ) |
| 15 |
14
|
imp |
|- ( ( y e. |^| S /\ r e. S ) -> y e. r ) |
| 16 |
13 15
|
sylan |
|- ( ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> y e. r ) |
| 17 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 18 |
17
|
subrngmcl |
|- ( ( r e. ( SubRng ` R ) /\ x e. r /\ y e. r ) -> ( x ( .r ` R ) y ) e. r ) |
| 19 |
8 12 16 18
|
syl3anc |
|- ( ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ r e. S ) -> ( x ( .r ` R ) y ) e. r ) |
| 20 |
19
|
ralrimiva |
|- ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> A. r e. S ( x ( .r ` R ) y ) e. r ) |
| 21 |
|
ovex |
|- ( x ( .r ` R ) y ) e. _V |
| 22 |
21
|
elint2 |
|- ( ( x ( .r ` R ) y ) e. |^| S <-> A. r e. S ( x ( .r ` R ) y ) e. r ) |
| 23 |
20 22
|
sylibr |
|- ( ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> ( x ( .r ` R ) y ) e. |^| S ) |
| 24 |
23
|
ralrimivva |
|- ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> A. x e. |^| S A. y e. |^| S ( x ( .r ` R ) y ) e. |^| S ) |
| 25 |
|
ssn0 |
|- ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> ( SubRng ` R ) =/= (/) ) |
| 26 |
|
n0 |
|- ( ( SubRng ` R ) =/= (/) <-> E. r r e. ( SubRng ` R ) ) |
| 27 |
|
subrngrcl |
|- ( r e. ( SubRng ` R ) -> R e. Rng ) |
| 28 |
27
|
exlimiv |
|- ( E. r r e. ( SubRng ` R ) -> R e. Rng ) |
| 29 |
26 28
|
sylbi |
|- ( ( SubRng ` R ) =/= (/) -> R e. Rng ) |
| 30 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 31 |
30 17
|
issubrng2 |
|- ( R e. Rng -> ( |^| S e. ( SubRng ` R ) <-> ( |^| S e. ( SubGrp ` R ) /\ A. x e. |^| S A. y e. |^| S ( x ( .r ` R ) y ) e. |^| S ) ) ) |
| 32 |
25 29 31
|
3syl |
|- ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> ( |^| S e. ( SubRng ` R ) <-> ( |^| S e. ( SubGrp ` R ) /\ A. x e. |^| S A. y e. |^| S ( x ( .r ` R ) y ) e. |^| S ) ) ) |
| 33 |
6 24 32
|
mpbir2and |
|- ( ( S C_ ( SubRng ` R ) /\ S =/= (/) ) -> |^| S e. ( SubRng ` R ) ) |