| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrngmcl.p |  |-  .x. = ( .r ` R ) | 
						
							| 2 |  | eqid |  |-  ( R |`s A ) = ( R |`s A ) | 
						
							| 3 | 2 | subrngrng |  |-  ( A e. ( SubRng ` R ) -> ( R |`s A ) e. Rng ) | 
						
							| 4 | 3 | 3ad2ant1 |  |-  ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> ( R |`s A ) e. Rng ) | 
						
							| 5 |  | simp2 |  |-  ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> X e. A ) | 
						
							| 6 | 2 | subrngbas |  |-  ( A e. ( SubRng ` R ) -> A = ( Base ` ( R |`s A ) ) ) | 
						
							| 7 | 6 | 3ad2ant1 |  |-  ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> A = ( Base ` ( R |`s A ) ) ) | 
						
							| 8 | 5 7 | eleqtrd |  |-  ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> X e. ( Base ` ( R |`s A ) ) ) | 
						
							| 9 |  | simp3 |  |-  ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> Y e. A ) | 
						
							| 10 | 9 7 | eleqtrd |  |-  ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> Y e. ( Base ` ( R |`s A ) ) ) | 
						
							| 11 |  | eqid |  |-  ( Base ` ( R |`s A ) ) = ( Base ` ( R |`s A ) ) | 
						
							| 12 |  | eqid |  |-  ( .r ` ( R |`s A ) ) = ( .r ` ( R |`s A ) ) | 
						
							| 13 | 11 12 | rngcl |  |-  ( ( ( R |`s A ) e. Rng /\ X e. ( Base ` ( R |`s A ) ) /\ Y e. ( Base ` ( R |`s A ) ) ) -> ( X ( .r ` ( R |`s A ) ) Y ) e. ( Base ` ( R |`s A ) ) ) | 
						
							| 14 | 4 8 10 13 | syl3anc |  |-  ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> ( X ( .r ` ( R |`s A ) ) Y ) e. ( Base ` ( R |`s A ) ) ) | 
						
							| 15 | 2 1 | ressmulr |  |-  ( A e. ( SubRng ` R ) -> .x. = ( .r ` ( R |`s A ) ) ) | 
						
							| 16 | 15 | 3ad2ant1 |  |-  ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> .x. = ( .r ` ( R |`s A ) ) ) | 
						
							| 17 | 16 | oveqd |  |-  ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> ( X .x. Y ) = ( X ( .r ` ( R |`s A ) ) Y ) ) | 
						
							| 18 | 14 17 7 | 3eltr4d |  |-  ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> ( X .x. Y ) e. A ) |