Description: A subring is a subset. (Contributed by AV, 14-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrngss.1 | |- B = ( Base ` R ) | |
| Assertion | subrngss | |- ( A e. ( SubRng ` R ) -> A C_ B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | subrngss.1 | |- B = ( Base ` R ) | |
| 2 | 1 | issubrng | |- ( A e. ( SubRng ` R ) <-> ( R e. Rng /\ ( R |`s A ) e. Rng /\ A C_ B ) ) | 
| 3 | 2 | simp3bi | |- ( A e. ( SubRng ` R ) -> A C_ B ) |