| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrngrcl |  |-  ( A e. ( SubRng ` R ) -> R e. Rng ) | 
						
							| 2 |  | rnggrp |  |-  ( R e. Rng -> R e. Grp ) | 
						
							| 3 | 1 2 | syl |  |-  ( A e. ( SubRng ` R ) -> R e. Grp ) | 
						
							| 4 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 5 | 4 | subrngss |  |-  ( A e. ( SubRng ` R ) -> A C_ ( Base ` R ) ) | 
						
							| 6 |  | eqid |  |-  ( R |`s A ) = ( R |`s A ) | 
						
							| 7 | 6 | subrngrng |  |-  ( A e. ( SubRng ` R ) -> ( R |`s A ) e. Rng ) | 
						
							| 8 |  | rnggrp |  |-  ( ( R |`s A ) e. Rng -> ( R |`s A ) e. Grp ) | 
						
							| 9 | 7 8 | syl |  |-  ( A e. ( SubRng ` R ) -> ( R |`s A ) e. Grp ) | 
						
							| 10 | 4 | issubg |  |-  ( A e. ( SubGrp ` R ) <-> ( R e. Grp /\ A C_ ( Base ` R ) /\ ( R |`s A ) e. Grp ) ) | 
						
							| 11 | 3 5 9 10 | syl3anbrc |  |-  ( A e. ( SubRng ` R ) -> A e. ( SubGrp ` R ) ) |