Description: Closure law for surreal subtraction. (Contributed by Scott Fenton, 3-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | subscl | |- ( ( A e. No /\ B e. No ) -> ( A -s B ) e. No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subsval | |- ( ( A e. No /\ B e. No ) -> ( A -s B ) = ( A +s ( -us ` B ) ) ) |
|
2 | negscl | |- ( B e. No -> ( -us ` B ) e. No ) |
|
3 | addscl | |- ( ( A e. No /\ ( -us ` B ) e. No ) -> ( A +s ( -us ` B ) ) e. No ) |
|
4 | 2 3 | sylan2 | |- ( ( A e. No /\ B e. No ) -> ( A +s ( -us ` B ) ) e. No ) |
5 | 1 4 | eqeltrd | |- ( ( A e. No /\ B e. No ) -> ( A -s B ) e. No ) |