Description: Closure law for surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subscld.1 | |- ( ph -> A e. No ) |
|
| subscld.2 | |- ( ph -> B e. No ) |
||
| Assertion | subscld | |- ( ph -> ( A -s B ) e. No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subscld.1 | |- ( ph -> A e. No ) |
|
| 2 | subscld.2 | |- ( ph -> B e. No ) |
|
| 3 | subscl | |- ( ( A e. No /\ B e. No ) -> ( A -s B ) e. No ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( A -s B ) e. No ) |