Step |
Hyp |
Ref |
Expression |
1 |
|
addsdid.1 |
|- ( ph -> A e. No ) |
2 |
|
addsdid.2 |
|- ( ph -> B e. No ) |
3 |
|
addsdid.3 |
|- ( ph -> C e. No ) |
4 |
2 3
|
subscld |
|- ( ph -> ( B -s C ) e. No ) |
5 |
1 3 4
|
addsdid |
|- ( ph -> ( A x.s ( C +s ( B -s C ) ) ) = ( ( A x.s C ) +s ( A x.s ( B -s C ) ) ) ) |
6 |
|
pncan3s |
|- ( ( C e. No /\ B e. No ) -> ( C +s ( B -s C ) ) = B ) |
7 |
3 2 6
|
syl2anc |
|- ( ph -> ( C +s ( B -s C ) ) = B ) |
8 |
7
|
oveq2d |
|- ( ph -> ( A x.s ( C +s ( B -s C ) ) ) = ( A x.s B ) ) |
9 |
5 8
|
eqtr3d |
|- ( ph -> ( ( A x.s C ) +s ( A x.s ( B -s C ) ) ) = ( A x.s B ) ) |
10 |
1 2
|
mulscld |
|- ( ph -> ( A x.s B ) e. No ) |
11 |
1 3
|
mulscld |
|- ( ph -> ( A x.s C ) e. No ) |
12 |
1 4
|
mulscld |
|- ( ph -> ( A x.s ( B -s C ) ) e. No ) |
13 |
10 11 12
|
subaddsd |
|- ( ph -> ( ( ( A x.s B ) -s ( A x.s C ) ) = ( A x.s ( B -s C ) ) <-> ( ( A x.s C ) +s ( A x.s ( B -s C ) ) ) = ( A x.s B ) ) ) |
14 |
9 13
|
mpbird |
|- ( ph -> ( ( A x.s B ) -s ( A x.s C ) ) = ( A x.s ( B -s C ) ) ) |
15 |
14
|
eqcomd |
|- ( ph -> ( A x.s ( B -s C ) ) = ( ( A x.s B ) -s ( A x.s C ) ) ) |