Metamath Proof Explorer


Theorem subsdid

Description: Distribution of surreal multiplication over subtraction. (Contributed by Scott Fenton, 9-Mar-2025)

Ref Expression
Hypotheses addsdid.1
|- ( ph -> A e. No )
addsdid.2
|- ( ph -> B e. No )
addsdid.3
|- ( ph -> C e. No )
Assertion subsdid
|- ( ph -> ( A x.s ( B -s C ) ) = ( ( A x.s B ) -s ( A x.s C ) ) )

Proof

Step Hyp Ref Expression
1 addsdid.1
 |-  ( ph -> A e. No )
2 addsdid.2
 |-  ( ph -> B e. No )
3 addsdid.3
 |-  ( ph -> C e. No )
4 2 3 subscld
 |-  ( ph -> ( B -s C ) e. No )
5 1 3 4 addsdid
 |-  ( ph -> ( A x.s ( C +s ( B -s C ) ) ) = ( ( A x.s C ) +s ( A x.s ( B -s C ) ) ) )
6 pncan3s
 |-  ( ( C e. No /\ B e. No ) -> ( C +s ( B -s C ) ) = B )
7 3 2 6 syl2anc
 |-  ( ph -> ( C +s ( B -s C ) ) = B )
8 7 oveq2d
 |-  ( ph -> ( A x.s ( C +s ( B -s C ) ) ) = ( A x.s B ) )
9 5 8 eqtr3d
 |-  ( ph -> ( ( A x.s C ) +s ( A x.s ( B -s C ) ) ) = ( A x.s B ) )
10 1 2 mulscld
 |-  ( ph -> ( A x.s B ) e. No )
11 1 3 mulscld
 |-  ( ph -> ( A x.s C ) e. No )
12 1 4 mulscld
 |-  ( ph -> ( A x.s ( B -s C ) ) e. No )
13 10 11 12 subaddsd
 |-  ( ph -> ( ( ( A x.s B ) -s ( A x.s C ) ) = ( A x.s ( B -s C ) ) <-> ( ( A x.s C ) +s ( A x.s ( B -s C ) ) ) = ( A x.s B ) ) )
14 9 13 mpbird
 |-  ( ph -> ( ( A x.s B ) -s ( A x.s C ) ) = ( A x.s ( B -s C ) ) )
15 14 eqcomd
 |-  ( ph -> ( A x.s ( B -s C ) ) = ( ( A x.s B ) -s ( A x.s C ) ) )