Metamath Proof Explorer


Theorem subsf

Description: Function statement for surreal subtraction. (Contributed by Scott Fenton, 17-May-2025)

Ref Expression
Assertion subsf
|- -s : ( No X. No ) --> No

Proof

Step Hyp Ref Expression
1 negscl
 |-  ( y e. No -> ( -us ` y ) e. No )
2 addscl
 |-  ( ( x e. No /\ ( -us ` y ) e. No ) -> ( x +s ( -us ` y ) ) e. No )
3 1 2 sylan2
 |-  ( ( x e. No /\ y e. No ) -> ( x +s ( -us ` y ) ) e. No )
4 3 rgen2
 |-  A. x e. No A. y e. No ( x +s ( -us ` y ) ) e. No
5 df-subs
 |-  -s = ( x e. No , y e. No |-> ( x +s ( -us ` y ) ) )
6 5 fmpo
 |-  ( A. x e. No A. y e. No ( x +s ( -us ` y ) ) e. No <-> -s : ( No X. No ) --> No )
7 4 6 mpbi
 |-  -s : ( No X. No ) --> No