Step |
Hyp |
Ref |
Expression |
1 |
|
subsf |
|- -s : ( No X. No ) --> No |
2 |
|
0sno |
|- 0s e. No |
3 |
|
opelxpi |
|- ( ( x e. No /\ 0s e. No ) -> <. x , 0s >. e. ( No X. No ) ) |
4 |
2 3
|
mpan2 |
|- ( x e. No -> <. x , 0s >. e. ( No X. No ) ) |
5 |
|
subsval |
|- ( ( x e. No /\ 0s e. No ) -> ( x -s 0s ) = ( x +s ( -us ` 0s ) ) ) |
6 |
2 5
|
mpan2 |
|- ( x e. No -> ( x -s 0s ) = ( x +s ( -us ` 0s ) ) ) |
7 |
|
negs0s |
|- ( -us ` 0s ) = 0s |
8 |
7
|
oveq2i |
|- ( x +s ( -us ` 0s ) ) = ( x +s 0s ) |
9 |
|
addsrid |
|- ( x e. No -> ( x +s 0s ) = x ) |
10 |
8 9
|
eqtrid |
|- ( x e. No -> ( x +s ( -us ` 0s ) ) = x ) |
11 |
6 10
|
eqtr2d |
|- ( x e. No -> x = ( x -s 0s ) ) |
12 |
|
fveq2 |
|- ( y = <. x , 0s >. -> ( -s ` y ) = ( -s ` <. x , 0s >. ) ) |
13 |
|
df-ov |
|- ( x -s 0s ) = ( -s ` <. x , 0s >. ) |
14 |
12 13
|
eqtr4di |
|- ( y = <. x , 0s >. -> ( -s ` y ) = ( x -s 0s ) ) |
15 |
14
|
rspceeqv |
|- ( ( <. x , 0s >. e. ( No X. No ) /\ x = ( x -s 0s ) ) -> E. y e. ( No X. No ) x = ( -s ` y ) ) |
16 |
4 11 15
|
syl2anc |
|- ( x e. No -> E. y e. ( No X. No ) x = ( -s ` y ) ) |
17 |
16
|
rgen |
|- A. x e. No E. y e. ( No X. No ) x = ( -s ` y ) |
18 |
|
dffo3 |
|- ( -s : ( No X. No ) -onto-> No <-> ( -s : ( No X. No ) --> No /\ A. x e. No E. y e. ( No X. No ) x = ( -s ` y ) ) ) |
19 |
1 17 18
|
mpbir2an |
|- -s : ( No X. No ) -onto-> No |