Step |
Hyp |
Ref |
Expression |
1 |
|
subsge0d.1 |
|- ( ph -> A e. No ) |
2 |
|
subsge0d.2 |
|- ( ph -> B e. No ) |
3 |
|
0sno |
|- 0s e. No |
4 |
3
|
a1i |
|- ( ph -> 0s e. No ) |
5 |
1 2
|
subscld |
|- ( ph -> ( A -s B ) e. No ) |
6 |
4 5 2
|
sleadd1d |
|- ( ph -> ( 0s <_s ( A -s B ) <-> ( 0s +s B ) <_s ( ( A -s B ) +s B ) ) ) |
7 |
|
addslid |
|- ( B e. No -> ( 0s +s B ) = B ) |
8 |
2 7
|
syl |
|- ( ph -> ( 0s +s B ) = B ) |
9 |
|
npcans |
|- ( ( A e. No /\ B e. No ) -> ( ( A -s B ) +s B ) = A ) |
10 |
1 2 9
|
syl2anc |
|- ( ph -> ( ( A -s B ) +s B ) = A ) |
11 |
8 10
|
breq12d |
|- ( ph -> ( ( 0s +s B ) <_s ( ( A -s B ) +s B ) <-> B <_s A ) ) |
12 |
6 11
|
bitrd |
|- ( ph -> ( 0s <_s ( A -s B ) <-> B <_s A ) ) |