| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
| 2 |
|
simpr |
|- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
| 3 |
|
subcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
| 4 |
1 2 3
|
adddird |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) x. ( A - B ) ) = ( ( A x. ( A - B ) ) + ( B x. ( A - B ) ) ) ) |
| 5 |
|
subdi |
|- ( ( A e. CC /\ A e. CC /\ B e. CC ) -> ( A x. ( A - B ) ) = ( ( A x. A ) - ( A x. B ) ) ) |
| 6 |
5
|
3anidm12 |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. ( A - B ) ) = ( ( A x. A ) - ( A x. B ) ) ) |
| 7 |
|
sqval |
|- ( A e. CC -> ( A ^ 2 ) = ( A x. A ) ) |
| 8 |
7
|
adantr |
|- ( ( A e. CC /\ B e. CC ) -> ( A ^ 2 ) = ( A x. A ) ) |
| 9 |
8
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) - ( A x. B ) ) = ( ( A x. A ) - ( A x. B ) ) ) |
| 10 |
6 9
|
eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. ( A - B ) ) = ( ( A ^ 2 ) - ( A x. B ) ) ) |
| 11 |
2 1 2
|
subdid |
|- ( ( A e. CC /\ B e. CC ) -> ( B x. ( A - B ) ) = ( ( B x. A ) - ( B x. B ) ) ) |
| 12 |
|
mulcom |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
| 13 |
|
sqval |
|- ( B e. CC -> ( B ^ 2 ) = ( B x. B ) ) |
| 14 |
13
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( B ^ 2 ) = ( B x. B ) ) |
| 15 |
12 14
|
oveq12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) - ( B ^ 2 ) ) = ( ( B x. A ) - ( B x. B ) ) ) |
| 16 |
11 15
|
eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( B x. ( A - B ) ) = ( ( A x. B ) - ( B ^ 2 ) ) ) |
| 17 |
10 16
|
oveq12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. ( A - B ) ) + ( B x. ( A - B ) ) ) = ( ( ( A ^ 2 ) - ( A x. B ) ) + ( ( A x. B ) - ( B ^ 2 ) ) ) ) |
| 18 |
|
sqcl |
|- ( A e. CC -> ( A ^ 2 ) e. CC ) |
| 19 |
18
|
adantr |
|- ( ( A e. CC /\ B e. CC ) -> ( A ^ 2 ) e. CC ) |
| 20 |
|
mulcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
| 21 |
|
sqcl |
|- ( B e. CC -> ( B ^ 2 ) e. CC ) |
| 22 |
21
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( B ^ 2 ) e. CC ) |
| 23 |
19 20 22
|
npncand |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A ^ 2 ) - ( A x. B ) ) + ( ( A x. B ) - ( B ^ 2 ) ) ) = ( ( A ^ 2 ) - ( B ^ 2 ) ) ) |
| 24 |
4 17 23
|
3eqtrrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) ) ) |