Metamath Proof Explorer


Theorem subsq0i

Description: The two solutions to the difference of squares set equal to zero. (Contributed by NM, 25-Apr-2006)

Ref Expression
Hypotheses binom2.1
|- A e. CC
binom2.2
|- B e. CC
Assertion subsq0i
|- ( ( ( A ^ 2 ) - ( B ^ 2 ) ) = 0 <-> ( A = B \/ A = -u B ) )

Proof

Step Hyp Ref Expression
1 binom2.1
 |-  A e. CC
2 binom2.2
 |-  B e. CC
3 1 sqcli
 |-  ( A ^ 2 ) e. CC
4 2 sqcli
 |-  ( B ^ 2 ) e. CC
5 3 4 subeq0i
 |-  ( ( ( A ^ 2 ) - ( B ^ 2 ) ) = 0 <-> ( A ^ 2 ) = ( B ^ 2 ) )
6 1 2 sqeqori
 |-  ( ( A ^ 2 ) = ( B ^ 2 ) <-> ( A = B \/ A = -u B ) )
7 5 6 bitri
 |-  ( ( ( A ^ 2 ) - ( B ^ 2 ) ) = 0 <-> ( A = B \/ A = -u B ) )