Step |
Hyp |
Ref |
Expression |
1 |
|
2cn |
|- 2 e. CC |
2 |
|
mulcl |
|- ( ( 2 e. CC /\ B e. CC ) -> ( 2 x. B ) e. CC ) |
3 |
1 2
|
mpan |
|- ( B e. CC -> ( 2 x. B ) e. CC ) |
4 |
3
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( 2 x. B ) e. CC ) |
5 |
|
subadd23 |
|- ( ( A e. CC /\ B e. CC /\ ( 2 x. B ) e. CC ) -> ( ( A - B ) + ( 2 x. B ) ) = ( A + ( ( 2 x. B ) - B ) ) ) |
6 |
4 5
|
mpd3an3 |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) + ( 2 x. B ) ) = ( A + ( ( 2 x. B ) - B ) ) ) |
7 |
|
2txmxeqx |
|- ( B e. CC -> ( ( 2 x. B ) - B ) = B ) |
8 |
7
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. B ) - B ) = B ) |
9 |
8
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( A + ( ( 2 x. B ) - B ) ) = ( A + B ) ) |
10 |
6 9
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) + ( 2 x. B ) ) = ( A + B ) ) |
11 |
10
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A - B ) + ( 2 x. B ) ) x. ( A - B ) ) = ( ( A + B ) x. ( A - B ) ) ) |
12 |
|
subcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
13 |
12 4 12
|
adddird |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A - B ) + ( 2 x. B ) ) x. ( A - B ) ) = ( ( ( A - B ) x. ( A - B ) ) + ( ( 2 x. B ) x. ( A - B ) ) ) ) |
14 |
11 13
|
eqtr3d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) x. ( A - B ) ) = ( ( ( A - B ) x. ( A - B ) ) + ( ( 2 x. B ) x. ( A - B ) ) ) ) |
15 |
|
subsq |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) ) ) |
16 |
|
sqval |
|- ( ( A - B ) e. CC -> ( ( A - B ) ^ 2 ) = ( ( A - B ) x. ( A - B ) ) ) |
17 |
12 16
|
syl |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) ^ 2 ) = ( ( A - B ) x. ( A - B ) ) ) |
18 |
17
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A - B ) ^ 2 ) + ( ( 2 x. B ) x. ( A - B ) ) ) = ( ( ( A - B ) x. ( A - B ) ) + ( ( 2 x. B ) x. ( A - B ) ) ) ) |
19 |
14 15 18
|
3eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( ( A - B ) ^ 2 ) + ( ( 2 x. B ) x. ( A - B ) ) ) ) |