Metamath Proof Explorer


Theorem subsqi

Description: Factor the difference of two squares. (Contributed by NM, 7-Feb-2005)

Ref Expression
Hypotheses binom2.1
|- A e. CC
binom2.2
|- B e. CC
Assertion subsqi
|- ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) )

Proof

Step Hyp Ref Expression
1 binom2.1
 |-  A e. CC
2 binom2.2
 |-  B e. CC
3 subsq
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) ) )
4 1 2 3 mp2an
 |-  ( ( A ^ 2 ) - ( B ^ 2 ) ) = ( ( A + B ) x. ( A - B ) )